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Abstract—As the manufacturing tasks becoming more 

individualized and more flexible, the machines in smart factory 

are required to do variable tasks collaboratively without 

reprogramming. In this speech, we discuss the similarity 

between smart manufacturing systems and the ubiquitous 

robotic systems, and introduce the efforts we made on deploying 

ubiquitous robotic technology to the smart factory. Specifically, 

a component based framework is designed in order to enable the 

communication and cooperation of the heterogeneous robotic 

devices. Further, a planning method based on automated 

planning techniques is implemented to coordinate the devices 

for various tasks. We also use a test bed of smart factory to 

demonstrate the effectiveness of the proposed framework. 

Advances in planning technologies and cost reduction have 

brought the systems into the range of even small-to-medium 

enterprises. 

I. INTRODUCTION 

The industrial robots have brought sustained productivity 
increases and manufacturing growth. However, the traditional 
program-by-teaching method, which takes considerable time 
and requires extensive expertise, has kept them out of 
low-volume, time-critical tasks [1, 2]. As the manufacturing 
tasks becoming more individualized and more flexible, it 
shows great prospect for the development of smart factories, 
where machines are not likely to be pre-configured for doing 
repeating jobs, but doing variable tasks collaboratively with 
each other and coping with a wide variety of unexpected 
environmental and operational changes.  

This feature of doing various tasks utilizing collaboration 
of robotic devices shares common ideas with the ubiquitous 
robotic technology, which is mainly applied in service robots 
domain. In this perspective, the novel industrial 
manufacturing system could take advantages of the ubiquitous 
robotic technology.  

Compared to the traditional industrial producing process, 
the smart factory encounter similar problems with the 
ubiquitous robotic systems [3, 4]. First, the distributed 
machines may be highly heterogeneous both with regard to 
hardware platform and software implementation - a state of 
affairs which presents considerable difficulty with regard to 
the communication and collaboration. The first problem is 
thus how to integrate these large amounts of heterogeneous 
robot devices while enabling painless modification, expansion 
and deletion. Second, there are a variety of customer orders 
and different situations for each order in the agile 
manufacturing domain. As a result, it requires up level task 
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planning, that handle the various tasks and dynamic 
environment without recoding the robots.  

Many existing researches focus on how to integrate RFID 
into the manufacturing system to collecting more data [5-7]. 
The manufacturing is smarter by tracking the processing 
information. We argue that it would achieve higher flexibility 
and intelligence if connecting not only the production but all 
the machinery processes, so that different robotic devices 
could collaborate into different groups according to different 
tasks. In the ubiquitous robotic systems, the most commonly 
employed techniques are based on Artificial Intelligence (AI). 
Young-Guk Ha et al. used SHOP2 planner to decompose 
services based on semantic knowledge [8]. Robert Lundh et al. 
implemented a configuration approach for their network robot 
system also based on SHOP planner [9]. Esra Erdem et al. 
presented an application of answer set programming (ASP) to 
housekeeping robotics [10]. Tim Niemueller et al. approached 
the task planning problem by deploying a rule engine [11]. In 
order to cope with the uncertainties brought by the human 
interference and environmental changes, some researchers 
have used probabilistic models in task planning problems. For 
example, Marco Barbosa et al. used Partially Observable 
Markov Decision Processes (POMDP) to model the tasks with 
uncertainty [12]. Marcello Cirillo et al. implemented RTLplan 
for probabilistic domains [13]. These AI based planning 
methods play an important part in the ubiquitous robotic 
systems, and could also be applied to the manufacturing 
problems in the smart factory, which could reach a higher 
level of flexibility and agility.  

In view of the foregoing, we propose in this paper a 
framework of smart factory that takes advantages of 
ubiquitous robotic technology. We employ a component based 
method to abstract each machinery process as a module with 
standardized communication ports. So different machines are 
able to communicate and cooperate with each other upon these 
ports. Furthermore, a task planning method based on general 
purpose automated planning method is developed to 
coordinate these components according to customers’ orders. 
A study case of the smart factory is implemented as a 
demonstration platform for our methods.  

II. SYSTEM ARCHITECTURE 

In contrast to traditional manufacturing processes, the 
smart manufacturing offers the advantage of distributed 
networked machines to complete different tasks through 
collaboration. The framework for smart factory is designed as 
Figure 1.  

In the low layer, the robotic devices are developed into 
components that they can “plug and play” in the system and be 
reused and reconfigured according to different manufacturing 
process. These components are the foundation of the system. 
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As mentioned, robotic components are highly heterogeneous 
with respect to platforms such as operating system, 
programming language and communication media. 
Middleware is thus employed to generalize the components 
into a uniform abstraction which enables dynamic 
communication and coordination between any two of the 
modules [14]. This also brings benefits to the modification of 
existing devices and the expansion of new ones.  

In the upper layer, a number of functionalities are 
developed in the internal cloud, such as the human-system 
interface, storage management, task planning, virtual 
manufacturing and big data collection. The customer orders 
products through a human-system interface. The order 
includes customized requests, for instance the favorite color 
and shape of the parts and whether the parts being polished etc. 
These orders are sent to the task planning module, which also 
utilizing the information from the storage management 
module. The planner is the key part of the system’s agility and 
intelligence. It turns customers’ orders into sub-task sequences, 
which can be directly carried out by corresponding robotic 
components. It is a general purpose planner, which will be 
detailed later. 
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Figure 1.   System architecture of the smart factory 

III. COMPONENT-BASED MACHINERY PROCESS 

Components use ports to communicate with each other and 
with high level controller. The ports are categorized into data 
ports and service ports [15]. The data port is responsible for 
the continuous exchange of data. Each component can have 
any number of data in-ports and out-ports. A data out-port 
sends the data to a corresponding in-port which receives the 
data. The service port provides the command based 
communication. The component with a service port, offering a 
set of services, listens for requests for those services via a 
connector. 

Each component has three service ports, namely FuncGet, 
FuncSet and ExeStatusGet. The service port is responsible for 
the interaction with the upper layer. FuncGet port reports to 
the service layer about the components’ state. For example, 
the polishing robot reports the available polishing 
configuration; the Autonomous Intelligent Mobile 
Manipulator (AIMM) feeds back its coordinates, etc. FuncSet 
port provides the functionality invoking, such as setting the 

target position for the AIMM, start polishing with certain 
configuration, etc. ExeStatusGet port returns the execution 
status, for example whether or not the AIMM has reached its 
destination, or whether the polishing robot succeed or fail in 
doing the task.  

Each component may have any number of data ports for 
continuous data exchange between components. For instance, 
the localization information is transferred from the data 
out-port of laser component to the data in-port of the path 
planning component. Once two data ports are connected, those 
two components are able to perform real-time communication 
to accomplish the task collaboratively. 
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Figure 2.  Some of the robotic components in our system. Each of the 

components has data ports and service ports.   

A. Polishing Component with path auto-generation 

Traditionally, the polishing path is taught by the expert 
engineers. This teaching process could be complex and 
tedious [16,17]. In our smart factory, the polishing path is 
automatically generated from the CAD data (Figure 3 (b-c)). 
Then, the robot follows this path by a motion planning 
algorithm with collision avoidance (Figure 3 (d)). Besides, the 
polishing area is easy to specify with a user-friendly GUI as 
Figure 3 (a).  

 
Figure 3.  (a) Configure the polishing area, (b) Auto-generate the polishing 

path, (c) Path generation and tool simulation (d) Motion planning and 

polishing with dual-arm robot 

The FuncSet service port of this component provides the 
polishing functionality calling.  In the upper layer, the task 
planning module calls on this service port following the results 
generated by the planner. Every functionality of the service 
ports corresponds to one symbolic action of the planning 



  

domain.  This polishing functionality is corresponds to the 
action: polish(polisher, object, configuration).  

B. AIMM Component 

AIMM is responsible for the transportation task that 
transports parts and work pieces between workstations and 
storages. Such transportation tasks contain physical separation 
larger than the workspace of the robot manipulator. This 
requires a lot of technologies such object recognition, grasp 
point generating, motion planning, localization, path planning 
and etc. It uses RGB-D camera for the object recognition and 
obstacle avoidance, and uses laser sensor for the localization.  

This component provides three functionalities, picking up 
an object from working spots, putting down an object from 
working spots and moving itself between working spots. 
These introduce three actions of the planning domain, which 
are move(AIMM, location1, location2), pickup(AIMM, object, 
location), and putdown(AIMM, object, location).  

 

Figure 4.  AIMM is picking up a working part form the warehouse. The left 

bottom scene is from the RGB-D camera. The motion planner convert the 3D 

data to grid obstacles. 

 
Figure 5.  Assembling robot with visual detection. It consists a camera, a 

robot arm and a controller. 

C. Assembling Component 

The assembling robot also has the sensing capability. The 
working parts are detected and located online with a camera. 
The visual detecting method is able to recognize complex 
shape. The localization error is within 1mm.  

The assembling component provides the assembling 
functionality. The corresponding action for planning module 
is assemble(assembler, part1, part2, configuration).  The 
assembler could handle different types of assembling tasks. 
For example, it is able to assemble parts with different shapes, 
different orientations, or different joint shape. This 
information is also calculated by the task planner, and passed 
to the assembler through the ‘configuration’ parameter.  

D. Object Recognition Component 

Object Recognition is the foundation of different kinds of 
robot tasks such as polishing, assembling and transferring. 
The object recognition component is based on the RGB-D 
sensor. It detects the positions and orientations of target object, 
which is usually texture-less in manufacturing context.  This 
study employs a combination of 2D template matching and 3D 
pose estimation techniques as Figure 6.  shows.  The 
composite of template consists of two parts, Gradient 
Orientation Map and 3D Orientation Coarse Estimation.   

This component provides the recognition and localization 
of a number of predefined objects.  It returns the object’s 
localization and orientation. The corresponding action is 
objRecognize(camera, objName).  

 

Figure 6.  Texture-less object recognition using combination of 2D template 

matching and 3D pose estimation  

E. Virtual manufacturing 

A simulation environment is implemented using 
AutoMod® as Figure 7.  shows. It empowers the designers to 
achieve a better layout of the machines, optimize the device 
configurations and fast adapt to change of the manufacturing 
task.   

The simulation process plays an important role in the 
designing and implementation. It generates the statistic results 
on production, rate of capacity utilization and etc. It helps to 
improve the configuration of the production line.  The Figure 
7(c) shows the production number in 12 hours simulation. It is 
also reported that the cutting process of the CNCs on the right 
side is time consuming. Improve this process process is the 
key issue to improve the factory’s production efficiency. 



  

 

   

Figure 7.  (a) The simulation environment of the virtual manufactuing 

system, (b) Simulation on CNC and industiral robot arm, (c) The 

manufacturing efficiency statistics  

IV. GENERAL TASK PLANNING MODULE BASED ON 

AUTOMATED PLANNING TECHNIQUE 

The task planning module is a crucial part in the smart 
manufacturing system. The problem of task planning is a hard 
open problem for distributed systems. In the industrial domain, 
the tasks are complicated and the situations are dynamic. It is 
unlikely to predefine all the possible states. As a result, a 
flexible and robust planning method is needed. What’s more, 
it is supposed to be a domain-independent general approach 
for solving a variety of problems. 

A. Task Modeling 

Task modeling is the precondition of the task planning. 
The quality of the planning result is greatly depends on the 
expressivity of the task model. On the other hand, the more 
complicated of the model, the more difficult for the planner to 
solve the problem.  

This paper follows the techniques in automated planning 
field. The Task planning problem is modeled as a state 
transition system. Formally, it is modeled as a five-tuple 

( , , , , )S A c I G , where: 

 
1 2{ , , }S s s is a finite set of world states; 

 1 2{ , , }A a a is a finite set of actions, each a A  is 

a triple ( , , )a a aname pre eff  referred to the action’s 

name, precondition and effects respectively.  

 
0:c A   is the cost function;  

 I S  is a set demotes the initial state; 

 G S  is a set denotes the goal state.  

To further depict the planning domain and planning 
problem, the Planning Domain Definition Language (PDDL) 
[18] is employed. Some sample actions are shown below, 
representing the moving capability of the mobile robot and the 
grasping capability of a robot arm. 

(:action drive 

 :parameters (?r - mobile ?start - place ?dist - place) 

 :precondition (and (at ?r ?start) (can-locate ?r)) 

 :effect (and (at ?r ?dist) (not (at ?r ?start)))) 

(:action pickup 

 :parameters (?a - arm ?o - object ?p - plane) 

 :precondition (and (beside ?a ?p) (on ?o ?p)) 

 :effect (and (in ?o ?a) (not (on ?o ?p)))) 

(:action putdown 

 :parameters (?a - arm ?o - object ?p - plane) 

 :precondition (and (beside ?a ?p) (in ?o ?a)) 

 :effect (and (on ?o ?p) (not (in ?o ?a)))) 

B. Task Planning 

Inspired by International Planning Competition (IPC), the 
automated planning technology has been significantly 
improved these years. The increase was mainly due to three 
fundamental approaches in plan generation. First, the 
Graphplan approach [19] improved the planning efficiency by 
a relaxation method based on planning graphs. The second 
approach is the planning as satisfiability method [20], which 
uses propositional reasoning to solve the planning problem. 
The third is the heuristic searching [21] that accelerates the 
search speed with heuristic function.  

This paper employs the heuristic search based algorithm to 
solve the planning problem we defined above, referring to the 
Fast Downward (FD) planner [21]. The PDDL files are 
translated to build a search space, which can be seen as a 
directed graph, where the node denotes the state of the system, 
and the link denotes the action that make the system transfer 
from one state to another. FD searches the shortest path that 
starts from the initial state and reaches the goal state. The links 
on the path compose an action sequence, which is the planning 
solution. We improve the FD planner by adapting it to the 
online planning system. The detailed algorithm is shown 
below.  

Algorithm 1: Task planning 

while exists task T uncompleted:  

for each alive component 
iC :  

                readState( )i is C  

                if is  is ERROR_STATE: reset(
iC ) endif 

        endfor 

       0 1analyzeState( , , )initS s s  

       analyzeTask( )goalS T  

       taskModelPDDL( , )task init goalP S S  

       FDplanner( , )result task domainT P P  

       for each sub-task 
it  in 

resultT : 

               while( execute( )i ir t  not complete) endwhile 

               if ir  is SUCCESS: continue 

               else:  break with failure  

               endif 

       endfor 

       if not failure: mark T as completed 

endwhile 

 

(a) 

(b) (c) 



  

 

Figure 8.  The  execution process of one manufacturing task 

C. Combining middleware and task planner 

As illustrates, the service layer and the device layer 
communicate through 3 kinds of service ports, namely 
FuncGet, FuncSet and ExeStatusGet. The Device Manager is 
developed as the bridge between these two layers.  

Firstly, the FuncGet service ports are used by readState(Ci) 
function with respect to Algorithm 1. Each component Ci 
provides the functionality of reporting its own states. For 
instance, the object recognition component reports the name 
of objects that are currently in its view. All these states are 
translated by the Device Manager, and then form the initial 
state fed to the task planner.  

Secondly, the planning result is in the form of action 
sequences, such as ‘drive AGV spot1 spot2’, ‘pickup AIMM 
object1 polisher_station’, etc. Notice that the first item is the 
action name, and the second item is configured as the 
component name, of who is in charge of this action. Device 
Manger compiles each action into a method-call through 
associated FuncSet service port. For example, the above two 
actions are compiled as AGV.move_to(spot2_x, spot2_y), 
AIMM.pickup(object1_id) respectively. These methods are 
defined in an interface definition language (IDL) file for each 
service port. 

Thirdly, when executing each action, it is important to 
monitor its status. If it’s successful, it can move on to the next 
action, while if it’s failing, it can start that over again. The 
ExeStatusGet service ports are responsible for reporting the 
execution status. There are 4 types of status, namely idle, 
running, success and failure.  

Another way to execute an action is to connect two 
components’ data ports. As the localization example of the 
video shows, every time the mobile robot switching 
localization component, it switches the data port, to which it 
connect its own data port.   

Two major benefits of this approach are it allows an easy 

extension with new components and allows an easy transition 

to new task domains. Adding new components has little side 

effect on the existing ones and the planning module. All that 

need to take care is to define the three kinds of service ports or 

other necessary data ports. Besides, same set of components 

can be used in different task domains, as long as the PDDL 

files are provided.  

V. EXPERIMENTS AND RESULTS 

A smart factory was implemented based on the ubiquitous 
robotic technology. It took in customers’ individualized order 
and arranged the producing process accordingly. Figure 8 
shows one execution of the smart factory task. First, the 
customer made an order through the user interface. The order 
was then sent to the task planning module, which calculated 
the action sequence hierarchically. 3D printers started to make 
parts with specific color and shape as Figure 8 (b). Meanwhile, 
the AIMM transported the part from the storage to the 
polishing station as shown in Figure 8 (c-e). After that, the 
dual-arm polishing robot polished the part according to 
customer’s configuration as Figure 8 (f). At last, the parts were 
transported to the assembling spot after which the product was 
successfully processed as Figure 8 (g-h). 

With the component-based framework, every machinery 

process is ready to cooperate with each other. For instance, 

the continuous localization data is transferred from the laser 

sensor to the AIMM’s path planning module through data 

port. And the polishing robot gets the location of object from 

the object recognition component. Further, this modular 

framework also facilitates the easy expansion of new devices 

and painless modification of the existing devices. For 

example, when we added new AGVs to the smart factory, no 

modification is needed for the system architecture, planning 

algorithm and any of other components. All that needed is to 

register the added AGVs to the planner, so that they can be 

called by the planner. 

Compared to the traditional manufacturing systems, our 

system is more flexible and efficient. The industrial robots in 

our systems are all capable of sensing and planning 

techniques. Such as the picking, placing, polishing and 

assembling, none of these robots are setting by teaching 

methods. As a result, it is more accessible to dynamic tasks. 



  

For example, the polishing robot in our system is capable of 

polish objects with different shapes and polishing areas; and 

the assembling robot is able to assemble working parts in in 

different locations and from different directions. We also 

upgrade the system with more AGVs for transferring the parts 

between the storage center and the working station. No 

modification is needed when deploying the existing 

components to the upgraded one. All that needed is adding 

some new components, and upgrading the domain description 

file. The components and the planning module are reusable 

for different domains.  

VI. SUMMARY AND FUTURE WORK 

Given the increasing popularity of smart manufacturing as 

a solution offering better autonomy, this paper discussed the 

similarity of the smart manufacturing with the ubiquitous 

robotic system. A component based framework has been 

proposed, and proved to be suitable for industrial domain. 

Further, since the manufacturing problems are often in 

large-scale with uncertainties, a planning method based on 

automated planning techniques is implemented to coordinate 

the devices for various tasks. 

A smart factory was implemented as the testing bed of our 

framework and algorithms. The individualized orders were 

processed by the system that arranged the producing process 

accordingly. The results showed that the framework 

facilitates the communication and cooperation between the 

robotic components. Further the planning method has enabled 

the system to tackle various tasks in dynamic situation.  

It is our view that the results obtained from this work 

represent a substantial improvement over the some of the 

more common approaches. Advances in planning 

technologies and cost reduction have brought the systems into 

the range of even small-to-medium enterprises. 
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