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Abstract
Purpose – The purpose of the present paper is to propose a full model-based method for distance-mapping calibration for the non-SVP (non-single
viewpoint) catadioptric camera of the soccer robot. The method should be easy to operate, efficient, accurate, and scalable to fit larger field sizes.
Design/methodology/approach – The distance-mapping model was first constructed based on the imaging principle. The authors then calibrated the
internal parameters using the mirror boundary and used the mirror center to choose the correct pose from two possible solutions. The authors then
proposed a three-point method based on a unique solution case of the non-SVP P3P (perspective-three-point) problem to solve the external parameters.
Lastly, they built the distance mapping by back-projection.
Findings – The simulation experimental results have shown that the authors’ method is very accurate even when there is severe misalignment
between the mirror and the camera and that all calibration operations, except the calibration of a standard camera, can be completed in 1 min.
The result of the comparison with the traditional calibration method shows that the authors’ method is superior to the traditional method in terms of
accuracy and efficiency.
Originality/value – The proposed calibration method is scalable to larger fields because it only uses the boundary of the mirror and three feature
points on the field, and does not need additional calibration objects. Additionally, an automatic calibration method that can be used during the game
can be easily developed based on this method. Moreover, the proposed mirror-pose-selection method and a unique solution to the non-SVP P3P
problem are especially useful for a non-SVP catadioptric camera.
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1. Introduction

A catadioptric camera is a vision system consisting of a standard

camera directed upwards toward a mirror (Daniilids and

Geyer, 2001). As a type of omni-directional camera, it has a

very large field of view (FOV), typically 3608 in azimuth and

908-1408 in elevation, which is a great advantage for many

applications. Generally, catadioptric cameras can be divided

into two types: single viewpoint (SVP) and non-SVP. The SVP

catadioptric camera maintains a single viewpoint just like a

regular camera, and so it has a simple mathematical model.

According to Baker and Nayar (1999), to construct an SVP

catadioptric camera, the mirror and camera must meet two

criteria: the form of the mirror surface should be parabolic,

hyperbolic, or elliptical, and the mirror and camera should be

aligned in a rigid relative position. In practice, it is difficult and

costly to build an accurate SVP catadioptric camera, even

impossible in some special cases. In the Middle Size League of

RoboCup competition (MSL), soccer robots on most of the

teams are equipped with the non-SVP catadioptric cameras

dissatisfy those two criteria and they have complicated

mathematical models.
TheMSLis oneof themost interesting leagues in theRoboCup

(Robot SoccerWorld CupKitano et al. (1997)), in which several

midsized (the largest robot is 50 cm £ 50cm £ 80cm) soccer

robots play soccer autonomously. In the game, the soccer robot

must perceive the surrounding environment mostly by itself,

rarely by communicating with its teammates, and then make a

decision as to what to do; therefore, the performance of the

sensors of the soccer robot is important.During the development

of the MSL, many types of sensors were used by soccer robots,

such as odometers, ultrasonic sensors, laser range finders, and

infrared field detectors. The non-SVP catadioptric camera is now

the main sensor in soccer robots for almost all teams.
Generally, a calibration process is necessary before using any

type of the vision system, and this process varies according to

the model of the system and the application. The main task of a

non-SVP catadioptric camera in a soccer robot is to detect

surrounding objects such as the ball, other robots, and thewhite

lines on the field, and then measure the distances to those

objects. Usually, because of the plane motion properties of a

soccer robot, we measure the distance between the robot

base and the contact point of those objects on the field.
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Therefore, we need to calibrate the distance mapping between

the real distance on the soccer field relative to the robot and the
image distance in the omni-directional image captured by

the catadioptric camera. In the case of theMSL, this calibration
usually needs to be done frequently because of the displacement

of the camera system in transportation or during the game.
Therefore, the calibration needs to be accurate as well as
efficient. Currently, there are two types of calibration methods

for distance mapping:
1 Interpolation method. The interpolation method uses a very

simple principle. First, it builds an initial mapping between
several image points and world points on the soccer field

using some calibration objects. This is done manually by
most of the teams, but it also can be done automatically
(Tribots code, 2005). The residual image points can then

be mapped to the world points by interpolating them from
the initial mapping. Interpolation method is the traditional

calibration method that is widely used in soccer robot
field. Implementing like a black box algorithm, it can work

well without the knowledge of the surface equation of
the mirror and the parameters of the camera. On the other
hand, it will perform poorly when the misalignment

between the mirror and the camera is severe. Another
disadvantage of this method is that, it is time consuming,

particularly to create the initial mapping. That is because it
needs a large number of initial corresponding points evenly

distributed in the omni directional image, but restricted to
the size of the calibration objects not all of those points can
be obtained at one time, thus usually, the robot needs to

spin around, which causes a lot of time. Moreover, along
with the increasing of the size of the soccer field, it requires

larger calibration objects which will make it difficult to be
used.

2 Model-based method. The model-based method first defines
a mathematical model of the distance mapping, and then
calibrates the unknown parameters of the model. The

model can be divided into an approximate model and an
accurate (or full) model. The approximate mapping

model uses an empirical formula to model distance
mapping, usually assuming every direction is the same.

This means that the axes of the camera and the mirror must
coincide. The calibration process is similar to that of the
interpolation method. It first obtains corresponding

points between the image and the environment and then
uses those points to calibrate the model parameters.

Heinemann et al. (2006) proposed to apply evolutionary
algorithms to solve the mapping function automatically,

but their model considered only the displacement between
the axis of the camera and the symmetry axis of the mirror.
The advantage of using the evolutionary algorithm is that it

does not need the initial value of those model parameters.
Zongjie et al. (2008) added the image center parameter into

the approximate model, and proposed an error descent
algorithm to optimize those model parameters. Because

they do not consider the robot position in their model,
they need to put the robot in a known position on the field.
On the other hand, the accurate model is based on the

imaging principle, so it can handle the complete non-SVP
case. The CAMBADA team proposed an accurate model

method (António et al., 2011; Cunha et al., 2006), and they
tried to calibrate the model parameters partly by measuring

the setup itself and partly by analysis of the images
of objects such as the mirror boundary, the center of the

mirror image, the center of the robot image, as well as the

radius, distance, and eccentricity of the game field lines,

mainly the midfield circle, lateral, and area lines. Their

method is difficult to operate.

Outside the domain of the RoboCup, the calibration methods

of non-SVP catadioptric cameras for general use, most of

which are 3D reconstruction applications (Mičušı́k and Pajdla,

2004), also provide much inspiration. Strelow et al. (2001)

presented a full model of the imaging process, which includes

the rotation and translation between the camera and mirror,

and an algorithm that determines this relative position from

observations of a batch of known points in a single image. This

algorithm can tackle various amounts of misalignment between

the mirror and camera, but it is difficult to prepare those 3D

marker points. Mashita et al. (2005) proposed a method using

themirror boundary to calibrate the camera-to-mirror relation,

which is a conic-based analytical method that can avoid

the initial value and local minimum problems arising from

nonlinear optimization. Zhiyu et al. (2012) also use the mirror

boundary to calibrate the camera-to-mirror relation, but they

propose to select the correct pose by the image of the lens.

Maxime (2008) calibrated the catadioptric camera using

multi view geometry (Hartley, 2003). Their method needs a

rich-featured environment and needs many images to be taken,

and it only calibrates the internal parameters.
The present paper proposes an improved accurate model

method. We also used the boundary of the mirror to calibrate

the mirror-to-camera pose similar to Mashita et al. (2005) and

Zhiyu et al. (2012), but a simple and practical pose selection

method is proposed to select the correct solution from the two

possible solutions. Then, a unique solution non-SVP P3P

problem is proposed and used for calibrating the mirror-to-

world transformation. Last, according to the model and the

parameters, we built a distance-mapping matrix using a back-

projection method. In the experiment, we built a simulation

environment, and based on synthetic data, we tested the

calibration accuracy.
The paper is organized as follows. In Section 2, we construct

the imaging principle model of a non-SVP catadioptric

camera. Section 3 describes the calibration procedure.

Section 4 provides the experimental results, and in Section 5,

we present our conclusion.

2. Distance mapping model

In this section, we model the distance mapping between the

image points and the real world points based on the model

developed by Mashita et al. (2005), extend it to an arbitrary

type of revolving mirror, and add a robot-centered coordinate

frame.

2.1 Notation

A 2D vector p ¼ ½u v �T represents the image coordinate of an

image point p, and a 3D vector P* ¼ ½ x y z �T represents the

coordinate of a pointP in the coordinate frame * *, which can be

the r (robot), w (world), c (camera), or m (mirror) coordinate

frame.We use �x to denote the homograph vector by adding 1 as

the last element: �p ¼ ½u v 1 �T and �P* ¼ ½ x y z 1 �T.
A 3 £ 3 matrixes Rij and a 3 £ 1 vector Tij represent the

coordinate transformation from coordinate frame i to j (i, j are

the same as *), with the transformation equation (1):
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Pj ¼ R ijPi þ Tij ð1Þ

A camera is modeled using the usual pinhole model, and image

distortion is not considered, since the distortion can be

corrected before calibration. The camera calibration matrix K

and the projection relationship between a 3D point P and its

image point p are given by equation (2):

s�p ¼ K½Ij0� �Pc ¼ KPc K ¼

a c u0

0 b v0

0 0 1

2
6664

3
7775 ð2Þ

where s is a scale factor, a and b is the focus length,

c is the skew value, u0 and v0 is the coordinates of the image

center.
We use the abbreviations ICS, CCS, WCS, and RCS for

the coordinate systems of the image plane, camera, world, and

robot, respectively.
The mirror surface in the MCS is represented by fm(X) ¼ 0,

which is assumed to be known in our method.

2.2 Modeling

Figure 1 shows the structure of the non-SVP catadioptric

camera. To map from an image point to a world point, we

assume that one ray emanates from the camera centerOc, passes

through the image point p, meets the mirror at M, and is then

reflected to point P. We can obtain the mapping through the

following steps.
Because point M on the mirror surface is projected onto the

image plane at point p, from equation (2), we obtain Mc with

a scale factor as:

s�p ¼ KMc ) Mc ¼ sK21 �p ð3Þ

Then coordinate of M in the MCS is expressed as the

following equation, in which vim is the direction vector of the

incident light:

Mm ¼ RcmMc þ Tcm ¼ sRcmK
21 �p þ Tcm ¼ svim þ Tcm ð4Þ

Point M expressed in the WCS is:

Mw ¼ RmwMm þ Tmw

The normal vector of the mirror at point M can be represented

as nm ¼ ½ ð›f m=›xÞMm
ð›f m=›yÞMm

ð›f m=›zÞMm �T. If we

normalize the normal vector as n̂m ¼ nm=knmk, we can

compute the reflected ray vom as:

vom ¼ vim 2 2ðvim · n̂mÞ · n̂m

Vector vom can be expressed in the WCS, i.e.:

vow ¼ Rmwvom

ThepointP lies on the reflected ray vo, sowe canpresentP in the

WCS as:

Pw ¼ Mw þ tvow

¼ ðRmwðsRcmK
21 �p þ TcmÞ þ TmwÞ

þ tRmwðRcmK
21 �p 2 2ðRcmK

21 �p · n̂mÞ · n̂mÞ

ðt . 0Þ

ð5Þ

where the t is a scale factor.

Figure 1 Imaging principle of non-SVP catadioptric camera
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Finally, expressing the point P in the RCS, we have:

Pr ¼ RwrPw þ Twr

¼ RwrððRmwðsRcmK
21 �p þ TcmÞ þ TmwÞ

þ tRmwðRcmK
21 �p 2 2ðRcmK

21 �p · n̂mÞ · n̂mÞÞ þ Twr

With n̂m ¼ nm

knmk
;

nm ¼
›f m

›x

� �
Mm

›f m

›y

� �
Mm

›f m

›z

� �
Mm

� �T
; t . 0

ð6Þ

The final equation (6) shows the relation between the image

point �p and the world point Pr. Note that in equation (6),

the unknown variables are K, Rcm, Tcm, s, Rmw, Tmw, Rwr, Twr

and t. However, because we assume that the surface function

fm(X) ¼ 0 is known so that s can be solved by letting

fm(Mm) ¼ 0 and because P lies in the x-y plane so that the

z-coordinate of Pw is zero, t can also be solved. Finally, the

remaining unknown variables are K, Rcm, Tcm, Rmw, Tmw, Rwr

and Twr. As usual, K, Rcm and Tcm are defined as the internal

parameters, and Rmw, Tmw, Rwr and Twr are defined as the

external parameters.

3. Calibration

This section provides details on how to solve the unknown

variables in equation (6). We will calibrate the internal and

external parameters separately.

3.1 Internal parameter calibration

As mentioned above, the internal parameters contain the

camera calibration matrix K and the camera-to-mirror

transformations Rcm and Tcm. The calibration of K has been

widely researched as a basic problem in the computer vision

domain, such as Zhang’s (1999) method, and in the

implementation the Matlab camera calibration toolbox

provided by Bouguet (2008). The problem calibrating

Rcm and Tcm is the same as a mirror pose estimation

problem. In our case, we used the circle contour of the mirror

base to determine the pose of the mirror referring to Chen et al.

(2004).
Assuming the quadratic curve equation of the image of the

circular boundary of the mirror base in the ICS is:

Ax2 þ 2BxyþCy2 þ 2Dxþ 2Eyþ F ¼ 0 ð7Þ

Denote:

Q ¼

A B D

B C E

D E F

0
BB@

1
CCA;

and let l ¼ ðl1 l2 l3 Þ and V ¼ ð v1 v2 v3 Þ be the

eigenvalues and normalized eigenvectors of Q. Let z0 be

the distance from the projected center to the base of

the mirror, and r be the radius of the base boundary. Then we

have:

z0 ¼ S3
l2rffiffiffiffiffiffiffiffiffiffi
2l1l3

p

C ¼ z0V S2
l3
l2

ffiffiffiffiffiffiffiffiffiffi
l12l2
l12l3

q
0 2 S1

l1
l2

ffiffiffiffiffiffiffiffiffiffi
l22l3
l12l3

q� �T

N ¼ V S2

ffiffiffiffiffiffiffiffiffiffi
l12l2
l12l3

q
0 2 S1

ffiffiffiffiffiffiffiffiffiffi
l22l3
l12l3

q� �T

8>>>>>><
>>>>>>:

ð8Þ

C · ð 0 0 1 ÞT , 0

N · ð0 0 1 ÞT . 0

8<
: ð9Þ

where C is the center of the boundary circle, N is the normal

vector of the mirror base, and S1, S2 and S3 are undetermined

signs.
Using equation (9), the condition that the mirror is in front

of the camera and the direction of the z-axis of the MCS is

consistent with the CCS, we can only determine two of the

three undetermined signs in equation (8), and so we have two

solutions remaining. Mashita et al. (2005) selected the true

solution from the two possible solutions by the line at infinity,

which is not suited for an indoor environment because it

cannot obtain an image of the line at infinity. And different

with Zhiyu et al. (2012), we propose to use the center of the

mirror as an additional point to choose the correct pose.

When we designed the mirror, we added a platform to the

mirror, as in Figure 2(a), and glued a small color marker to

the center of the mirror to easily to recognize the center, as in

Figure 2(b). We predict the idea image coordinate of the

center marker point for each possible pose, and then

compared them to the real image coordinate of the center

to choose the right pose. The distinguish ability of the mirror

center is explained as follows.
Without losing generality, we assume that S1 is the last

undetermined sign and l1 – l2 – l3. Therefore, according to

the matrix theory, V is a orthogonal matrix, and the column

vectors can be treated as a basis vector group of the R3 space;

hence, from equation (8), so the coordinates of C and N
under this group of base are:

z0S2
l3
l2

ffiffiffiffiffiffiffiffiffiffi
l12l2
l12l3

q
0 2z0S1

l1
l2

ffiffiffiffiffiffiffiffiffiffi
l22l3
l12l3

q� 	T

and

S2

ffiffiffiffiffiffiffiffiffiffi
l12l2
l12l3

q
0 2S1

ffiffiffiffiffiffiffiffiffiffi
l22l3
l12l3

q� 	T

:

The two possible results are shown in Figure 3. In Figure 3,

the two possible mirror centers are P1 and P2. Because P1 and

P2 are symmetrical with the axis v3, the projection of them in

the image plane are distinguishable unless they are coincident.

Therefore, the mirror center point can be used to select the

true solution.

3.2 External parameter calibration

The external parameters contain the mirror-to-world

transformation Rmw and Tmw and the world-to-robot

transformation Rwr and Twr. We will focus on the mirror-to-

world calibration.

3.2.1 Mirror-to-world calibration
If we know the pose of the WCS’s x-y plane in the MCS, the

mirror-to-world transformation can be solved. This idea leads us

to theclassical three-point space resectionproblemorperspective-

three-point problem (review by Haralick et al. (1994)): if given
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the perspective projection (the image coordinates) of three points

constituting the vertices of a known triangle in 3D space, it is

possible to determine the position of each of the vertices in the
CCS. Nistér and Stewénius (2007) extended the perspective

camera to a general camera, which can be a non-SVP camera,

and pointed out that this problem generally has eight solutions.
Gao et al. (2003) proved that, in reality, if the angles between

any two of the back-projected rays corresponding to the three

control points are obtuse, the P3P problem can have only one

solution. In this paper, we extend Gao’s special case to the non-
SVP P3P problem and use this unique solution three-point

method todeterminate the pose of the x-yplane of theWCS in the

MCS.
First, we will construct the non-SVP P3P model and then

prove the uniqueness of the solution under the obtuse

condition that is the same as that of Gao’s. We built the non-
SVP P3P model as follows; the model is shown in Figure 4.

After calibrating the internal parameters, if we know three

image points pi (i ¼ 1, 2, 3), we can obtain three rays rayi
m ¼

Mi
m þ tvoi

m ði ¼ 1; 2; 3Þ (where Mi
m is the intersection point of

the rays in the surface of the mirror, and voi
m is the direction

vector of the reflection rays), which pass through three world
points Pi (i ¼ 1, 2, 3). Let dij be the distance from Pi to Pj, uij

be the angle between rayi and rayj, and hij be the distance

between rayi and rayj. The line segment Dij Dji is

perpendicular to both rayi and rayj and meets rayi on Dij

and rayj on Dji. We define the lengths from D12 to P1 as t1,

from D21 to P2 as t2 and from D32 to P3 as t3.

Variables a,b and c represent the distances of D21 to D23,

D32 to D31, andD12 to D13, respectively. By a simple geometric

relationship and the cosine theorem, we can obtain

equation (10):

d2
12 2 h2

12 ¼ t21 þ t22 2 2t1t2cosu12

d2
23 2 h2

23 ¼ ðt2 þ aÞ2 þ t23 2 2ðt2 þ aÞt3cosu23
d2
13 2 h2

13 ¼ ðt1 þ cÞ2 þ ðt3 þ bÞ2 2 2ðt1 þ cÞðt3 þ bÞcosu13

8>>><
>>>:

ð10Þ

The obtuse condition is:

t1 . 0; ði ¼ 1; 2; 3Þ
u12 . p

2
; u23 . p

2
; u13 . p

2

8<
: ð11Þ

Using equation (11) and representing t1 and t3 by t2 in

equation (10):

t1 ¼ t2cosu12 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2
12 2 t22sinu

2
12

q

t3 ¼ ðt2 þ aÞcosu23 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2
32 2 ðt2 þ aÞ2sinu223

q

gðt2Þ ¼ ðt1 þ cÞ2 þ ðt3 þ bÞ2 2 2ðt1 þ cÞðt3 þ bÞcosu13
2ðd2

13 2 h2
13Þ ¼ 0

8>>>>>>>>><
>>>>>>>>>:

ð12Þ

Figure 3 Illustration of two possible solutions

Mirror Base

V3

V1
O

Image plane
P1 P2

C2
C1

Mirror Base

Figure 4 Three-point model for non-SVP catadioptric camera

Figure 2 Illustration of mirror center marker

Platform

Mirror Base

Color
marker
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The derivations are:

dt1

dt2

¼ cosu12 2
t2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d2122t2
2
sinu212

p , 0

dt3

dt2

¼ cosu23 2
t2þaffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d2322ðt2þaÞ2sinu223
p , 0

dgðt2Þ
dt2

¼ 2ðt1 þ cÞ dt1
dt2

þ 2ðt3 þ bÞ dt3

dt2

22cosu13 ðt1 þ cÞ dt3

dt2

þ ðt3 þ bÞ dt1
dt2

� �
, 0

8>>>>>>>>>>><
>>>>>>>>>>>:

ð13Þ

In equation (12), we obtain an equation g(t2) ¼ 0, (t2 . 0),

which is a nonlinear function. From the derivation

equation (13), g(t2) is a monotonic decreasing function of t2,

when t2 . 0. Therefore, if g(t2) ¼ 0, (t2 . 0) has a solution,

that is physically guarded, it must be the unique solution. We

can easily obtain a numerical solution for t2 using a nonlinear

function solver with an arbitrary positive initial value or use a

simple root searchmethod (Haralick et al., 1994).Afterwe solve

for t1, t2 and t3, we can obtain the coordinates of the three

world points in the MCS, Pi
m; ði ¼ 1; 2; 3Þ.

Then, because Pi
w; ði ¼ 1; 2; 3Þ is given, we can obtain the

three point pairs ðPi
m;P

i
wÞ; ði ¼ 1; 2; 3Þ that correspond

between the MCS and the WCS in equation (14), which

can be solved using the method of Arun et al. (1987):

Pi
w ¼ RmwPi

m þ Tmw ði ¼ 1; 2; 3Þ ð14Þ

3.2.2 World-to-robot calibration
Like the solution ofRmw and Tmw, we calibrateRwr and Twr with

the point pair ðPi
w;P

i
rÞ. In practice, if we assume that the x-y

planes of the WCS and the RCS are coincident, then, the

unknown variables decrease to three, two from translation and

one from rotation; hence, two corresponding point pairs are

sufficient.

3.3 Nonlinear optimization

Although the three-point method can obtain a good calibration

result of the mirror-to-world parameters, using the result as the

initial value, higher accuracy can be obtained by some nonlinear

optimization methods. We adapt the optimization method of

Zongjie et al. (2008),which uses the back-projection error of the

white line points on the soccer field as the optimization objects.

The back-projection error is defined as follows. Assuming that a

white point p in the ICS is transformed to point P on the soccer

field inWCS according to equation (5), we can say that because

point P is a white point, it should be located on one of the white

lines on the soccer field. Then, the back-projection error of p,

notated as ek, is the distance from P to the nearest white line.

Thus, the back-projection error function of all the white points

in the image is the sum of ek and can be represented by

equation (15). However, according to Lauer et al. (2005), using

equation (16) can be more robust when considering the noise,

where c is a constant value.The value of c is empirical, and in the

original paper by Lauer et al., it is set as 250mm. At present,

however, the soccer field is larger than when the paper was

written. Thus, we accordingly increased the value of c to

500mm. Because, at present, we take the image for calibration

statically (the robot is not moving), there is negligible noise and

there is little effect from the value of c.However, if wedevelop an

automatic calibration method in the future, which allows

calibration when the robot is moving, this value should be

checked carefully.
Because we have a very good initial value from the three-

point method, we can use the general Levenberg-Marquardt
optimization algorithm to optimize equation (16). Notice

that, theoretically, we can optimize both the external and

internal parameters simultaneously, but we found that the

optimization result is not very good. Moreover, because the

calibration of the internal parameters has already been

optimized and is very accurate, in this study, we only optimize

the external parameters:

totalError ¼
Xn
k¼1

e2k ð15Þ

totalError ¼
Xn
k¼1

12
c2

c2 þ e2k

� 	
ð16Þ

3.4 Building distance mapping

After calibrating all those parameters, it is easy to build the

distance mapping by back-projecting the image points onto
the RCS based on equation (6). We construct the distance

mapping as a matrix with the same size as the image. The

index of the matrix element is consistent with the image

coordinate of the image points, and the context of the element

is the coordinate of the world point in the RCS. This

distance-mapping matrix makes the transformation from the
image point to the RCS very easy and efficient.

3.5 Summary

The working flow of the proposed calibration method is as

follows:
. calibrate the camera by the conventional method;
. use the contour of the mirror to calibrate the mirror-to-

camera position and select the correct mirror center;
. use the three-point method to calibrate the mirror-to-

world position and optimize the result;
. calibrate the world-to-robot position; and
. build the distance mapping matrix using equation (6).

4. Experimental results

In this section,we report on theexperiments conducted to test the

accuracy and efficiency of the proposed calibration method, and

we compare our method with the traditional calibrationmethod.

Computer simulated data were used because the ground truth is

easy to obtain in a simulation environment.Notice that theworld-
to-robot transformation was not calibrated.
The soccer field used for the test had a standard size of

18m £ 12m, as shown in Figure 5(a). We used a hyperboloid

mirror with the surface equation of:

f mðXÞ ¼ x2 þ y2

548:1140
2

z2

789:3274
þ 1 ¼ 0

in MCS, which was used by the Tribots team, as shown in

Figure 2. The catadioptric camera was about 1m above the

field, as per the rules of the MSL. The simulation results are
shown in Figure 5(b), and the resolution of the omni

directional image is 640 £ 480, which is a common resolution

in current competition. In Figure 5(a), it can be seen that the

three red marker points are used by the three-point method,
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and the catadioptric camera is placed on the black point. This

configuration of the three points provided good results, which

has been proven in our previous paper (Xiaoxiao and Qixin,

2012) – the further the three points are from the robot,

the better the results will be.

4.1 The calibration result of our method

For the implementation, we first need to determine the outlines

of the mirror and the central mark. In practice, the color of the

background of the omni directional image and the central mark

can be chosen appropriately to simplify finding of the outline,

as shown in Figure 5(c). However, in the simulation system,

we failed to change the background color, so we generated

Figure 5(c) using Photoshop. A simple color segmentation

method was used to obtain the results shown in Figure 5(d),

and then, the Canny edge detection method was used to detect

the outlines shown in Figure 5(e). We then used an ellipse-

fitting algorithm (Andrew et al., 1999) to compute the

Q matrix. The image coordinates of the three marker points

were obtained manually to make the experiment more like the

practical calibration. The white line points used for the

nonlinear optimization were also found by the simple color-

segment method and are shown in Figure 5(f).
The calibration results of the internal and external

parameters are summarized in Tables I and II, respectively. In

Table I, the comparison of the two predicted image coordinates

Figure 5 (a) Illustration of the soccer field, three marker points, and camera position, (b) simulated omni directional image, (c) the simulated omni
directional image, which is closer to the real image, (d) the result of the color segment, (e) the result of Canny edge detection and (f) the white line
points for nonlinear optimization

robot

marker point

(a) (b)

(c) (d)

(e) (f)
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of the mirror center with the true value indicates that the image

coordinate of the mirror center is distinguishable for choosing

the right pose. From the comparison ofC andNwith the ground

truth,we can see that the accuracy of themirror pose is very high

because, theoretically, a one-pixel error in the ICS corresponds

to 0.13mm in the mirror base plane. Table II summarizes the

calibration results of the mirror-to-world parameters, using

three Euler angles ux, uy and uz to represent the rotation and Tx,

Ty and Tz to represent the translation components. We can see

that the three-point method has a small error in the rotation

components but a slightly larger error in the translation

components.Moreover, the nonlinear optimization reduces the

error of most of those parameters, except those of uz and Tx.

There are two reasons for these results; one is the error of

the internal parameter and the other is the discretization error of

the image, which make the ground truth unreachable by

calibration.
To illustrate the result more intuitively, we built the distance

mapping from the ICS to the WCS using equation (5) and

then unwrapped the omni directional image. Additionally,

some crossed lines were added to the soccer field to make the

result clearer, as shown in Figure 6(a) and (b). Figure 7(a)

shows the unwrapped image using the results of the three-

point method, and Figure 7(b) is drawn with the correct lines.

In Figure 7(b), we can see that the unwrapped result has some

error even in the place of the three calibration points, such as

the center point of the middle circle (the black point in the
zoomed part of Figure 7(b)), and this is because the image
coordinates of the calibration points are manually selected
with a random error. In other places on the field, there is also
some error because those back-projected lines do not
correspond to the correct lines very well. However, the
back-projection result is still acceptable. Figure 7(c) and (d)
are the results of the nonlinear optimization. From the
comparison of Figure 7(b) and (d), it is clear that the back-
projection error is reduced, and the maximum error is less
than 300mm in a 12m £ 12m area around the camera. The
average back-projection errors of those white line points
totalError/n are 112.3 and 63.8mm before and after the
nonlinear optimization, respectively.
Additionally, the calibration process is very efficient, and it

takes less than 1min.

4.2 Comparison with traditional method

As mentioned in the introduction, the traditional method
utilizes the interpolating method to calibrate the distance
mapping between the image coordinate and the world
coordinate. Obtaining the initial mapping of several points is
the core of the interpretationmethod.The common scene of the
traditional calibration is shown in Figure 8, in which the blue-
and-white board is the calibration board and the edges between
two colors are used as the calibration marks (with known
distances to the robot used to build the initial mapping).

Figure 6 (a) Illustration of the soccer field, three marker points, and camera position and (b) simulated omni directional image

(a) (b)

Table II Calibration result for external parameters

ux (8) uy (8) uz (8) Tx (mm) Ty (mm) Tz (mm)

Ground truth 5.4163 4.5455 175 23,383.2334 3.2515 754.1425

Three-point method 5.6419 4.3868 175.0366 23,413.3504 6.3483 717.7123

Absolute error of the three-point method 0.2256 0.1587 0.0366 30.117 3.0968 36.4302

Nonlinear optimisation 5.5920 4.4576 174.9355 23,342.1218 7.5052 736.117

Absolute error of the nonlinear optimisation 0.1717 0.0911 0.0685 41.1115 4.2536 18.0255

Table I Calibration result for internal parameters

C (mm) n Perspective center 1 (pixel) Perspective center 2 (pixel)

Ground truth (20.7027, 0.8343, 99.9326) (20.0789, 0.0944, 0.9924) (325.8, 231.9) (325.8, 231.9)

Calibration result (20.787, 0.7785, 100.1089) (20.0797, 0.0928, 0.9925) (325.8, 232) (293.1, 270.6)

Absolute error (0.0843, 0.0558, 0.1763) (0.0008, 0.0016, 0.0001) (0, 0.1) (32.7, 38.7)
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Notice that because the omni directional camera used by the

soccer robot is non-SVP, which means that the distortion of

the omni directional image usually is not symmetrical, all of the

directions of the omni directional camera need to be calibrated,

and in the practical calibration processing, the robot needs to

rotate to obtain the initial correspondence in every direction.

In our experiment, we made a perfect calibration board, as

shown in Figure 9(a), which is not possible in practice. Using

this calibration board, we do not need to rotate the robot and

can obtain the initial correspondence of all the directions in

one image. During implementation, we apply the code of the

Tribots team (Tribots code, 2005) for interpolation, which uses

linear interpolation. After the distance mapping is computed,

we unwrap the omni directional image to show the accuracy of

the distance mapping. Because the distances of the initial mark

points to the robot are 500, 1,000, 2,000, 3,000, 4,000, 6,000

and 10,000mm, we will unwrap the soccer field in the range of

10m to the camera.
Two configurations of the catadioptric camera were used to

compare our method with the traditional method. The first one

is a severe misalignment configuration, which is the

same configuration as used in the last section, having both a

transformation and a rotation between the mirror and the

camera. The second one is a slight misalignment configuration,

which only has an offset along the axis causing a non-confocal

condition between the mirror and camera. Because we cannot

obtain the internal and external parameters explicitly by using

the traditional method, we will use the unwrapped result and

back-projection error as the comparison object.

Figure 8 The calibration scene of the traditional calibration method

robotCalibration board

Figure 7 (a) Unwrapped result of omni directional image, (b) unwrapped
result with correct cross lines drawn in, (c) unwrapped result of omni
directional image using nonlinear optimization and (d) unwrapped result
of nonlinear optimization with correct cross lines drawn in

(a)

(b)

(c)

(d)

Figure 9 The perfect calibration board
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The severe misalignment case
The unwrapped results of our method are shown in the last

section as Figure 7. Figure 10(a) and (b) are the original and

unwrapped omni directional images of the calibration board,

respectively. Figure 10(b) reflects the precision of the initial

distance mapping of those mark points. It can be seen that the

back-projection error is large in theupper rightpart of the largest

blue ring, which is not available in the severe misalignment

configuration and is caused by the error that occurs when we

obtain the image coordinates of the edge of a color change.

Figure 10(c) shows the unwrapped result of the soccer field with

cross lines (the original image is Figure 6(b)), in which we can

see that the interpolation result is not very good. This is because

the large misalignment between the mirror and the camera

caused serious nonlinear distance mapping. Moreover, the

further the distance to the camera, the larger the error is.
From the comparison of the results shown in Figures 7(d)

and 10(b), it is easy to conclude that our method is more

accurate than the traditional method for the non-SVP omni

directional camera with large misalignment between the

mirror and the camera.

The slight misalignment case
Figure 11(a) is the omni directional image of the soccer field

with cross lines, and the red point on it is used to calculate the

back-projection error. Figure 11(b) shows the omni directional

image of the calibration board. It is easy to see that the distortion

of the image is smaller than the distortion in Figure 10(a). After

calibration, we unwrapped the omni directional image using the

calibration results of our method, as shown in Figure 11(c), and

of the traditional method, as shown in Figure 11(d). Although it

is not as clear as in the severe misalignment case, the result of

our method is still better, from the comparison of Figure 11(c)

and (d). For a quantitative comparison, we use the average

back-projection error of the red points in Figure 11(a). Those

points are divided into several groups according to their

distances to the catadioptric camera. Table III summarizes the

comparison results. At every distance interval, the average error

of our method is smaller than that of the traditional method.

Moreover, at a distance interval of 6-10m, the error of the

traditional method is three times the error in a distance interval

of 0.5-6m, while the error using our method with the nonlinear

optimization is only double. Additionally, at a distance farther

than 10m, our method still has good precision, while the error

value is meaningless for the traditionalmethod, because it is just

calibrated in the 10m range. This means that our method is

scalable to a larger soccer field.
Additionally, our method is more efficient, because in

the practical calibration, the most time-consuming part is

preparing the calibration board, which is not needed

Figure 10 (a) The omni directional image of the calibration board, (b) unwrapped result of calibration board and (c) unwrapped result of the soccer
field with cross lines drawn in

(a) (b)

(c)
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in our method. Furthermore, the robot needs to rotate at least

3608 in the traditional calibration, which also increases

calibration time.

5. Conclusion

In this paper, we proposed a full model-based method for

the distance-mapping calibration of a non-SVP catadioptric

camera used by soccer robots. Thismethod uses only one image

of three feature points on the soccer field and does not need

additional calibration objects. The procedure for this method

consists of the internal parameter calibration, a three-point

method and nonlinear optimization to obtain external

parameters, and a back-projection process. The comparison

with the traditional method shows that the weaknesses of our

method are that the surface equation of the mirror must be

known and the outline of the mirror base needs to be in

the view of the camera (or at least part of the outline needs to be

viewable). However, those two requirements usually can be

satisfied for the soccer robot. On the other hand, the strengths

of our method are that because we do not need additional

calibration objects, it is easy to operate and is more efficient.

At the same time, it is more accurate than the traditional

method, especially when the catadioptric camera has a large

misalignment configuration. Our method also maintains good

precision when the target is far from the camera, so it can be

used for larger soccer fields. Moreover, a possible future

improvement is to develop an automatic calibration method

based on our method to allow in-game calibration.

References

Andrew, F., Maurizio, P. and Robert, B.F. (1999), “Direct

least squares fitting of ellipses”, IEEE Trans. Pattern Anal.
Mach. Intell., Vol. 21 No. 5, pp. 476-480.

António, J.R.N., Armando, J.P., Daniel, A.M. and

Bernardo, C. (2011), “An efficient omni directional vision

system for soccer robots: from calibration to object

detection”, Mechatronics, Vol. 21 No. 2, pp. 399-410.
Arun, K.S., Huang, T.S. and Blostein, S.D. (1987), “Least-

squares fitting of two 3-D point sets”, IEEE Transactions on
Pattern Analysis and Machine Intelligence,No. 5, pp. 698-700.

Baker, S. and Nayar, S.K. (1999), “A theory of single-

viewpoint catadioptric image formation”, Proceeding of

IJCV, Vol. 32 No. 1, pp. 175-196.
Bouguet (2008), “Matlab toolbox of camera calibration”,

available at: www.vision.caltech.edu/bouguetj/index.html

(accessed April 26, 2012).
Chen, Q., Wu, H.Y. and Wada, T. (2004), “Camera

calibration with two arbitrary coplanar circles”, Proceeding

of ECCV’2004, pp. 521-532.
Cunha, B., Azevedo, J., Lau, N. and Almeida, L. (2006),

“Obtaining the inverse distance map from a non-SVP

hyperbolic catadioptric robotic vision system”, RoboCup-2007:

RobotSoccerWorldCupXI,LNAI,Springer,Berlin,pp.417-427.
Daniilids, K. and Geyer, C. (2001), “Catadioptric projective

geometry”, International Journal of Computer Vision, Vol. 45

No. 3, pp. 223-243.
Gao, X., Hou, X., Tang, J. and Cheng, H. (2003), “Complete

solution classification for the perspective-three-point

problem”, IEEE Trans. Pattern Anal. Mach. Intell., Vol. 25

No. 8, pp. 930-943.

Figure 11 (a) Simulated omni directional image of the soccer field,
(b) omni directional image of the calibration board, (c) unwrapped result
of (a) using the calibration result of our method and (d) unwrapped result
of (a) using the calibration result of the traditional method

(a) (b)

(c)

(d)

Table III Comparison of the average back-projection errors

Distance

nterval

(m)

Average error

of three-point

method

(mm)

Average

error after

nonlinear

optimization

(mm)

Average error of

traditional

method

(mm)

0.5-6 48.1 28.9 74.8

6-10 114.5 61.2 256.6

10-14.7 296.3 94.1 Meaningless

0.5-10 74.5 41.8 147.2

Mapping of non-SVP catadioptric camera of the soccer robot

Xiaoxiao Zhu and Qixin Cao

Industrial Robot: An International Journal

Volume 40 · Number 5 · 2013 · 462–473

472



Haralick, R.M., Lee, C.N., Ottenberg, K. and Nolle, M.
(1994), “Review and analysis of solutions of the three point
perspective pose estimation problem”, International Journal
of Computer Vision, Vol. 13 No. 3, pp. 331-426.

Hartley, R. (2003), Multiple View Geometry in Computer
Vision, United Kingdom University Press, Edinburgh.

Heinemann, P., Streichert, F., Sehnke, F. and Zell, A. (2006),
“Automatic calibration of camera to world mapping in
robocup using evolutionary algorithms”, Proceedings of the
IEEE Congress on Evolutionary Computation (CEC 2006).

Kitano, H., Minoru, A., Yasuo, K.S., Itsuki, N. and Eiichi, O.
(1997), “RoboCup: the robot world cup initiative”,
Proceedings of the First International Conference on
Autonomous Agents, ACMPress,NewYork,NY, pp. 340-347.

Lauer, M., Lange, S. and Riedmiller, M. (2005), Calculating
the Perfect Match: An Efficient and Accurate Approach for
Robot Self-localization, Lecture Notes in Computer Science,
Vol. 4020, pp. 142-153.

Mashita, T., Iaw, Y. and Yachida, M. (2005), “Calibration
method for misaligned catadioptric camera”, Proceeding of
OMNIVIS’2005.

Maxime, L. (2008), “Automatic sense structure and camera
motion using a catadioptric system”, Computer Vision and
Image Understanding, Vol. 109 No. 2, pp. 186-203.
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