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Abstract
Purpose – Two and one half-dimensional (2.5D) grid maps are useful for navigation in outdoor environment or on non-flat surface. However, little
attention has been given to how to find an optimal path in a 2.5D grid map. The purpose of this paper is to develop a path-planning method in a 2.5D
grid map, which aims to provide an efficient solution to robot path planning no matter whether the robot is equipped with the prior knowledge of the
environment.
Design/methodology/approach – A 2.5D grid representation is proposed to model non-flat surface for mobile robots. According to the graph
extracted from the 2.5D grid map, an improved searching approach derived from A* algorithm is presented for the shortest path planning. With
reasonable assumption, the approach is improved for the path planning in unknown environment.
Findings – It is confirmed by experiments that the proposed planning approach provide a solution to the problem of optimal path planning in 2.5 grid
maps. Furthermore, the experiment results demonstrate that our 2.5D D* method leads to more efficient dynamic path planning for navigation in
unknown environment.
Originality/value – This paper proposes a path-planning approach in a 2.5D grid map which is used to represent a non-flat surface. The approach is
capable of efficient navigation no matter whether the global environmental information is available at the beginning of exploration.
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1. Introduction

An important task for mobile robots is autonomous

navigation, where the robot travels between a starting point

and a target point without the need for human intervention

(Latombe, 1991). A path between the starting and target

points that avoids collisions with obstacles is said to be

feasible (Ashlock et al., 2006). Thus, robot navigation

methods need to solve the path-planning problem, which is

to generate a feasible path and optimize this path with respect

to certain criteria. There are many studies on robot path

planning using various approaches. Latombe (1991) classified

robot planning methods appeared in the literature into

three main categories: roadmap (Kavraki et al., 1995) or

skeleton methods (Takahashi and Schilling, 1989), cell

decomposition methods (Kambhampati and Davis, 1986;

Hou and Zheng, 1994) and potential field methods (Chuang

and Ahuja, 1998; Valavanis et al., 2000). The skeleton

methods are mostly used for two-dimensional (2D) path

planning and are limited to simple configuration spaces.

The methods based on potential fields are fast but the moving

object can be trapped in local minima (Keymeulen and

Decuyper, 1996). In the cell decomposition approaches, the

configuration space is decomposed into a set of uniform or

non-uniform cells, for which they are also called as grid-based

approaches. Sophisticated A* and D* algorithm family

provides promising solution to the shortest path search in a

grid-based map. In the past decades, intelligent algorithms

such as fuzzy logic, neural network and genetic algorithm have

been employed for path planning in grid-based map. Ji et al.

(1999) adopted fuzzy logic to realize 3D local path planning

for an AUV. Yang and Meng (2001) use neural network

approaches to generate collision-free path in a non-stationary

environment. For its good search performance in large and

complex space, genetic algorithm (Randria et al., 2007) is also

used for path generation in grid-based maps.
However, most research works assume that the robots

move on flat surface which can be simply denoted by a 2D

grid-based map. For navigation tasks on outdoor or non-flat

surface, Seraji (1999) andYe (2007) evolved a new2Dgridmap

with traversability indices. Taking account of terrain characters

such as slope and roughness, the planner generates an optimal

pathwithminimumenergy consummation or shortest distance.

Carsten et al. (2006) extend the conventional 2D map to a

three-dimensional (3D) grid representation and proposes 3D

field D* algorithm to generate the shortest path for submarine

and aerial robots. Zhang et al. (2008) employ genetic algorithm

to solve path-planning problem in 3D grid environment.

However, full 3D models usually have high computational

demands that prevent them from being directly applicable in

large-scale environments (Triebel et al., 2006). To overcome

this problem, Fong et al. (2003) proposed a two and one
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half-dimensional (2 1/2D or 2.5D) grid map and implemented

path search based on TRULLA algorithm. Gutmann et al.
(2005) adopted 2.5Dgridmap for environmentalmodeling and

navigation in indoor environment containing stairs for biped

robots. Also, we presented our study on 2.5D gridmapwhich is

capable of rapid traversability assessment for mobile robots
traversing on rough terrain (Gu et al., 2008).
In the original works introduced above, we can see that little

attention has been received for the shortest path-planning

problem in 2.5D grid maps. This paper is focused on finding
a feasible path which is also as short as possible within the

2.5D grid set which consists of all passable grids in the map.

Traversability assessment is employed before path planning to

determine whether a 2.5D grid is passable. The method is

introduced in our previous work (Gu et al., 2008) and will not
be presented in this paper. After identifying the passable

grids, we propose 2.5D A* algorithm derived from

sophisticated A* for path planning in known maps. In such

cases, robot is equipped with full knowledge of the map before

carrying planning. Thereafter, heuristic functions and criteria

for replanning are improved for efficient dynamic planning in
partially known or unknown maps.
The remainder of the paper is organized as follows.

In Section 2, we will brief the 2.5D grid representation which

is first proposed in our previous work (Gu et al., 2008).
The improved planner for path searching in known 2.5D grid

map is introduced in Section 3. For dynamic path planning in

2.5D grid maps without prior knowledge of the environment,

cost functions and replanning criteria aredescribed inSection4.

In Section 5, simulations and experiments are studied to

examine the performance of the proposed algorithms in
different maps. Finally, a conclusion is presented in Section 6.

2. 2.5D grid-based map

Generally, when navigating outdoors or on non-flat surface

autonomously, robot uses diverse sensors (e.g. laser range

finder (LRF) and stereo vision sensors) to acquire the 3D
profile of environment. The key idea underlying the 2.5D grid

maps is to store the height information of the surface in a 2D

grid map. The result from either stereo vision or LRF is a

set of discrete 3D points, each of which can be denoted as

p ¼ ½ x y z �T (where z is the height value). According

to the x- and y-value, we can locate the corresponding grid
for every point p. For certain grid sij, the 3D points

located in the same grid make up of point set

Pij ¼ {pjxði;jÞ # x , xðiþ1;jÞ; yði;jÞ # y , yði;jþ1Þ}, where x(i,j),

y(i,j), x(iþ1,j) and y(i,jþ1) define the horizontal range of sij.

Let n denote the number of points in Pij. The average height

hij of Pij can be computed as:

hij ¼
1

n

Xn

i¼1

zi ; for p [ Pij : ð1Þ

With the average heights of adjacent grids, we can construct a

2.5D grid map representing the environmental surface as
shown in Figure 1(a).
For easy implementation of path-planning approaches,

a graph representing the 2.5D grid map can be extracted as

shown in Figure 1(b). Each grid can be represented by a node
(black circle in Figure 1(b)) which resides at the left-bottom

corner of the grid. The nodes are connected with edges

(dashed line in Figure 1(b)) for adjacent grid patches. Each

node carries a height value which indicates the average height
within the grid. The edge between adjacent nodes records the
cost value that the robot takes when traveling from one to
another. In our study, we use overall path length to evaluate
search result. Therefore, the cost cðsi ; sjÞ is represented by the
Euclidean distance between the two adjacent grids.

3. 2.5D A* algorithm

For 2D grid maps, it has been demonstrated that the planning
result of A* accords with that of Dijkstra’s algorithm.
By knowing each grid occupancy before planning, both A*

and Dijkstra’s algorithm can generate shortest path between
specified starting and target grids. However, the A* algorithm
visits much less grids than Dijkstra’s by adopting a heuristic
function which helps to guide the search towards the target.
In a 2.5D grid map, the traveling cost between two adjacent
grids is first calculated from the grids’ height. Thereafter,
Dijkstra’s algorithm can get the shortest path between two
specified grids. Similar with the planning process in a 2D grid
map, the Dijkstra’s is slow and low efficient. In order to
achieve efficient shortest path planning in a 2.5D grid map,
an appropriate heuristic function should be developed first.
For each grid s, the function gðsÞ indicates the minimum

cost to move from the starting grid, while the heuristic
function h(s) is an estimated cost of moving from s to the
target grid. In our study, gðsÞ is the sum of edge costs from the
starting grid:

gðsÞ ¼
Xn21

i¼0

cðsi ; siþ1Þ ð2Þ

where {s0; s1; . . . ; sn21; sn} represents the grid sequence that
have been traversed before arriving current grid s. h(s) is the
Euclidean distance between s and the target grid. Each grid
propagated during the search is assigned a cost function f(s)
which is given by:

f ðsÞ ¼ gðsÞ þ hðsÞ ð3Þ

The search maintains a priority queue ordered by the cost
function f(s). It pops a grid with minimum f(s) in the queue
each time as the next grid to go until the search reaches the
target grid.
We testify our proposed improved A* algorithm (named as

2.5D A*) and compare its result with that from Dijkstra’s.
The comparison in Figure 2 shows that the result of our 2.5DA*

also accords with that of Dijkstra’s. And with heuristic
functions, 2.5D A* plans more efficiently by expanding less
grids.

4. 2.5D D* algorithm

When traversing in unknown environment, the robot is not
able to learn the optimal path from its initial planning because
of the lack of the full knowledge of environment. The D*

(Stentz, 1995) planning method treats unknown areas as free
space at first. When moving along the path, robot observes
the environment and updates corresponding grids’ status in
the 2D map. If the renewed status of a grid conflicts with its
assumption, re-planning is employed to generate a new and
feasible path between current grid and specified target grid.
The process will continue until the robot gets to the target
grid or finds out the target grid unreachable. Therefore,
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in unknown environment, robot’s track between specified

starting and target grids consists of path-planning results

derived at different positions along the track. In this case, path

planning is aimed at generating shortest robot track during

reasonable planning times. For a 2.5D grid map, a planning

method originated from D* algorithm is proposed, named as

2.5D D* algorithm. We will introduce the cost functions of

2.5D D* algorithm, as well as the criteria for replanning.

A. Cost functions

In a 2.5Dgridmap, each grid contains a height value instead of a

status (obstacle or free space). The cost functions in

aforementioned 2.5D A* algorithm, gðsÞ and h(s), are not

available without prior knowledge of the environment before

planning. During robot’s movement in unknown environment,

the grid height is first updated by deployed sensor. Impassable

grids identified by traversability assessment (Gu et al., 2008)

will not be involved in path planning. In other words, 2.5D D*

algorithm will only propagate passable grids or those that have

not been observed yet as path candidate. According to whether

the grid is observed, the edge cost between two adjacent grids is

estimated as follows:

cðsi ; sjÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi 2 xjÞ2 þðyi 2 yjÞ2 þðhi 2 hjÞ2

q
; if si ; sj known

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi 2 xjÞ2 þðyi 2 yjÞ2

q
; otherwise

8>><
>>:

ð4Þ

Still, gðsÞ is denotedby the sumof edgecosts fromstartinggrid ss.

In the following content, diverse heuristic functions, h(s),

are built according to different assumptions of the target grid st.

The results are studied in the following sections to distinguish

the appropriate planning scheme in unknown 2.5D grid maps.

Assumption 1
The heuristic function is constructed WITHOUT grid heights. In

this case, the heuristic function of grid s is estimated as:

hðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx 2 xtÞ2 þ ðy 2 ytÞ2

q
ð5Þ

This estimate is similar with that used for planning in 2D grid

map. It provides quick planning speed by using the horizontal

distance instead and also helps to guide the search towards

the target grid. Obviously, path planning based on such

Figure 1 (a) 2.5D grid representation and (b) graph extracted from 2.5D grid

(a) (b)

Figure 2 Path planning results

(a) (b)

Notes: (a) 2.5D A* algorithm; (b) Dijkstra’s algorithm
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heuristic functions cannot generate shortest trajectories

because it neglects the grid heights during planning. Even
given the global knowledge of the environment, the robot is
barely able to shorten its trajectory.

Assumption 2
The height of the target grid is available at the beginning and the
heuristic function is constructed WITH grid heights. In some
practical robot applications, the surroundings around
specified target position will be perceived before navigation.
In such cases the height of target grid is learnt before the first
planning, which makes it possible to build a heuristic function
similar with that in the aforementioned 2.5D A*. However,
the function h(s) depends on whether the height of grid s is
available. If s has been observed by robot already, h(s) is

represented by the Euclidean distance between s and target
grid st. On the contrary, the height of s is denoted by the
height of starting grid hs. As a conclusion, the h(s) is
estimated as:

hðsÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx 2 xtÞ2 þ ðy 2 ytÞ þ ðh 2 htÞ

q
; if s known

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx 2 xtÞ2 þ ðy 2 ytÞ þ ðhs 2 htÞ

q
; otherwise

8>><
>>:

ð6Þ

Assumption 3
The height of the target grid is NOTavailable at the beginning and
the heuristic function is constructed WITH grid heights. During
most navigation tasks, the robot is not always equipped with
target information before the navigation starts. In planning in
unknown 2D grid maps, the planner cannot tell whether the

target grid is obstacle or free space until it goes close enough
to see. Nevertheless, it assumes the target grid as free space.
For the 2.5D D* algorithm, the Euclidean distance between s
and st is employed to indicate the heuristic function, h(s). The
height of target grid, in this case, is presumed as zero until it is
observed by the robot. Besides, the height of s is denoted by
hs until s is observed. Therefore, the heuristic function is

built as:

hðsÞ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2xtÞ2þðy2ytÞ2þðh2htÞ2

q
; if s;st known

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2xtÞ2þðy2ytÞ2þðhs2htÞ2

q
; if s unknown; st known

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2xtÞ2þðy2ytÞ2þh2

q
; if s known; st unknown

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2xtÞ2þðy2ytÞ2þh2

s

q
; otherwise

8>>>>>>>>>><
>>>>>>>>>>:

ð7Þ

By adopting the heuristic function according to assumption 2
or 3, the robot takes account of grid height aiming at
generating a trajectory as short as possible. The performance
of 2.5D D* algorithms based on the two heuristic functions
are introduced in Section 5.

B. Re-planning criterions

When traversing in a 2D grid map, the robot employs re-plan
when the grid in its way, which is assumed as free space, turns
out to be obstacle. The D* Lite algorithm (Koenig and

Likhachev, 2002) invokes re-plan when the cost of grid is
inconsistent with its prediction. During the navigation in
unknown environment, however, the cost of grid in 2.5D grid

map will frequently conflicts with its prediction if we use

Koenig and Likhachev (2002) re-planning criterion. In order

to enhance the efficiency of re-plan, we adopt local minima as
one of the re-planning criterions. During exploration, robot

analyzes its neighboring eight grids and finds the grid s with
lowest f(s) cost. If the grid with minimum f(s) cost accords
with the next grid to go provided by the planner, the robot

will continue moving along the current path. Otherwise, the

planner will determine whether a re-plan is needed.
However, it is widely accepted that a robot cannot be

efficiently guided by local minima. The robot may employ
redundant re-plans and, in some cases, even be trapped in

some region. The second re-planning criterion is that the

height of the grid that disagrees with the first criterion is out
of planner’s knowledge before the path is given. For example,

when the planner indicates that grid s is the next grid to go
and the height of s has been perceived before the planning, the

robot will go to s no matter whether s has the minimum f(s)
cost among the eight neighboring grid of robot’s current
position. Otherwise, a re-plan is employed if f(s) is not

minimum and a new path is generated between the current

and target grid.

5. Experiments and results

In this section, we present some experimental results.
Our proposed 2.5D D* algorithm is testified in a 2.5D grid

map which consists of 100 £ 100 grids. Each grid denotes the

height within an area of 10 £ 10 cm. The grid height is
stochastically generated by 1,000 iterations of Fault

Formation (Polack, 2002). Since the robot is not equipped

with prior knowledge of the environment at the beginning, it
has to perceive the environmental information during its

operation. First, we implement our aforementioned 2.5D D*

algorithm according to different assumptions and run the

simulated navigation in pre-generated 2.5D grid maps.

According to simulation results, cost function with shortest
trajectory is employed to carry out an experiment on dynamic

path planning.
Three different 2.5D D* algorithms derived from the three

assumptions, respectively, are employed separately to drive

the robot from a same starting grid to a specified target grid.
Four experiments are done for each 2.5D D* algorithm in two

different 2.5D grid maps (T1 and T2). In each grid map,

additionally, the robot moves towards two different target
grids (G1 and G2) in two separated experiments. The

trajectory generated by each planner in four experiments is

shown in Figure 3, with the red, green and blue line
representing the result of 2.5D D* algorithm according to

assumptions 1, 2 and 3, respectively. Besides, the purple line
in Figure 3 indicates the shortest path between the starting

and target grids in the map. However, different from the other

three tracks, the shortest path is generated by Dijkstra’s or
2.5D A* algorithm with the assumption that all grids’ height

are known before planning. It is used to gauge the difference

between trajectories produced by dynamic planning and
optimum planning result in a map.
As illustrated in Table I, the robot will traverse a longer

distance if the path planner does not take account of the grid

heights during planning. In addition, assumptions 2 and 3

output close trajectories. However, assumption 2 requires the
height of target grid be given before initial planning while

assumption 3 can work in a totally unknown map. For the
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sake of autonomy, 2.5D D* algorithm according to

assumption 3 provides a generic and feasible solution to

problem of path planning in unknown environment.
In order to validate the performance of the 2.5DD* algorithm,

we carried out an autonomous navigation experiment. The 2.5D

D* algorithm is developed according to assumption 3. The

experiment setup is shown in Figure 4. A differential-drive robot

is employed as mobile platform. A commercial stereo vision

solution (Bumblebee2) is adopted to reconstruct environment in

front of robot during its execution. The robot has no knowledge

of theenvironmentbefore the initial planning. Ithas toupdate the

2.5D grid map for the environment through deployed sensor in

the process of navigation. The 2.5D D* algorithm helps to

improve the efficiency of navigation by guiding the robot towards

the specified target.The robotwillmoveback to the start position

after it arrives at the target. The results of the experiment are

shown in Figure 5.
As shown inFigure 5,most regions (black region in thefigure)

in the environment remain still unknown after the experiment.

Figure 3 Trajectories produced by 2.5D D * path planners

(a) (b)

(c) (d)

Notes: (a) Move towards G1 in T1 (depicted as T1/G1); (b) move towards G2 in T1; (c) move towards G1 in T2; (d) move
towards G2 in T2

Figure 4 An experiment on dynamic path planning

Start

Target

Table I Trajectory length from starting grid to target grid

T1/G1 (cm) T1/G2 (cm) T2/G1 (cm) T2/G2 (cm)

Dijkstra’s 2,005.3 1,988.5 2,634.8 2,666.3

Assumption 1 2,663.9 2,517.3 3,092.9 3,133.0

Assumption 2 2,593.7 2,402.6 3,062.6 2,991.1

Assumption 3 2,551.9 2,439.2 2,937.4 2,990.3
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By adopting 2.5D D* algorithm, only grids necessary for

determining the path are perceived and updated in the 2.5D

grid map. The blue curve in Figure 5 is the trajectory of robot

after returning the start position. If we neglect the wriggle

caused by robot execution, the robot trajectory is close to the

shortest between start and target position, which demonstrates

the advantage of 2.5D D* algorithm.

6. Summary

In this paper, we extend the sophisticated A* algorithm and

employ the improved searching approaches for robot path

planning in proposed 2.5D grid maps. For the navigation in

known 2.5D maps, 2.5D A* algorithm is capable of generating

the shortest path between specified starting and target grids.
Meanwhile, it involves much less grids in path propagation

which greatly reduces time consumed for path planning.

Therefore, 2.5D A* algorithm provides an efficient solution to

path planning in known environment. For robot navigation

with no prior knowledge, we present 2.5D D* algorithm

and compare the planning results from three variations of

heuristic cost function. It is demonstrated by simulation and

experiment results that the 2.5D D* algorithm is capable of

efficient navigation in a 2.5D gridmap even lacking exact target

information. Guided by 2.5DD* algorithm, robot can generate

a collision-free path with reasonable length. In our study,

however, we notice that the path generated by our 2.5D D*

approach is suboptimal and not smooth enough for execution

because of the heading limitation in an eight-connected grid

representation. In the future, we will continue to improve our

planning approach and work on the integration of terrain

traversability and shortest path search for more efficient and

safe exploration.
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