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Abstract
Purpose – The purpose of this paper is to present a two-wheeled inverted pendulum with self-tilt-up motion ability. With this ability, the two-wheeled
inverted pendulum can erect without assistance, and then the vehicle can be autonomously deployed. The paper proposes an approach to achieve this
self-tilt-up motion, which involves precessional motion.
Design/methodology/approach – A flywheel is mounted inside the vehicle to perform high-speed spinning. The flywheel and body of the vehicle are
forced to move around a fixed point and precessional motion occurs. As a result of the precessional motion, a moment is synchronously generated to tilt
the body up to the upright position. Since no external force is applied on this two-wheeled inverted pendulum, it is called self-tilt-up motion. A 3D
model and a prototype are built to validate this approach.
Findings – The simulation and experimental results show that the self-tilting-up motion is successful.
Research limitations/implications – This paper presents a self-tilt-up motion for a two-wheeled inverted pendulum. With the analysis of the
dynamics, simulation demonstrations and prototype development, the results show that the vehicle could perform self-tilt-up motion without any
assistance. The principle of this self-tilt-up motion involves processional motion of rigid body. We also pointed out the factors that play important roles
in influencing the performance of self-tilt-up motion and then define the switching time for the motion to switch to dynamic balance movement.
Originality/value – Traditional multi-wheel robots cannot work when they overturn. However, the two-wheeled inverted pendulums with self-tilt-up
ability do not have this shortcoming. They can stand up to keep working even if they fall down. A two-wheeled inverted pendulum with self-tilt-up
ability can be applied to many places. Equipped with solar battery, it can be used as an independent explorer. This type of vehicle can be deployed in
swarms for planetary detection. For example, many small two-wheeled inverted pendulums assist a lunar rover for exploration, samples gathering, etc.
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1. Introduction

Recently, most studies on the two-wheeled inverted pendulum
focus on its balancing stability and mobility; this is due to the

inherent unstable dynamics of the systems. Ha and Yuta (1996)

proposed a trajectory-tracking control algorithm using a linear
state-space model. In 2002, Grasser et al. (2002) built a two-

wheeled inverted pendulum vehicle JOE. Its control system is
based on two state-space controllers. Kim et al. (2005) applied

Kane’s method to analyze a 3-DOF modeling of two-wheeled
inverted pendulum and to design the controller. SegwayTM, a

human transporter (2004), adopts a PID controller to
accommodate the weight change from different rider. Baloh

and Parent (2003) presented a self-balancing machine called

B2, which is designed for an urban transportation system. They
developed a six-order dynamic model for the B2. Pathak et al.

(2005) derived the dynamic equation of wheeled inverted

pendulum in terms of physical variables and studied the

system’s controllability. They designed a novel position

stabilization controller and use the linearized form of partial

feedback to derive a two-level velocity controller. Jung and Kim

(2008) presented an online learning control strategy using

neural network to stabilize a two-wheeled vehicle. In this

literature, the authors claimed that without knowing the

dynamics of the system, uncertainties in system dynamics are

compensated by neural network in an online fashion. Ren et al.

(2008) proposed a self-tuning PID control strategy for the

motion control system of a two-wheeled vehicle. The controller

parameters are tuned in real time to overcome the disturbances

and parameter variations.
In this study, our aim is to develop a two-wheeled inverted

pendulum that can self-tilt-up without assistance when it falls to

the ground and then to apply it to autonomous or auxiliary field

exploration where it is unreachable or hardly reachable. In this

application, two cases have to be considered. First, the two-

wheeled vehicle is not guaranteed to keep moving all the time and
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may fall down when unpredictable collision or other disturbances
occur. Second, the initial swing-up of the vehicle with its body
lying on the ground beforehand should be settled. In both cases,
the ability to perform self-tilt-up motion is necessary.

Little work has been carried out to implement self-tilt-up
motion for two-wheeled inverted pendulum. Samuel et al. (2001)
presented the tilt-up motion of a single-wheel robot (called
Gyrover).The spinningflywheel inGyrover acts asa gyroscope to
stabilize the robot and it can be tilted to achieve steering. They
claimed that the robot is able to recover from falling by tilting the
flywheel according to the conservation of angular momentum.
The mechanism detail of the tilt-up motion for the single-wheel
robot is described. Seong and Takahashi (2007) developed a
wheeled inverted pendulum-type assistant robot called
I-PENTAR, a robot that has three types of motions: inverted
mobile, standing and sitting. Here, the standing motion differs
from the self-tilt-up motion. In former standing motion, the body
of I-PENTAR does not lie on the ground completely. The body
still stands erect during standing and sitting movement. This is
different from our self-tilt-up motion.

In this paper, we apply precessional motion to self-tilt-up
motion. Precessional motion is a fixed-point rigid motion with a
rigid body high spinning. We settle a flywheel in the body of
vehicle as a rigid body. As shown in Figure 1, the flywheel is
settled inside the body and a top motor drives the flywheel to
spin. In order to get high-speed spinning, the reduction gearbox
of top motor is removed. The simplified configuration of vehicle
is shown in Figure 2. How the vehicle operates to realize self-tilt-
up motion will be presented in Section 2.

The rest of the paper is organized as follows. Section 2 gives an
overview of the modeling and the dynamic analysis. The
mechanism of self-tilt-up motion of this model is demonstrated.
Section 3 contains both simulation and experimental results.
To get the simulation results, we make use of the most widely
used mechanical system simulation software MSC.ADAMS.
To verify the simulation results, we perform experiments with a
two-wheeled inverted pendulum prototype (shown in Figure 3)
and present the results. In Section 4, we conclude this paper and
discuss the future work.

2. Modeling and analysis

2.1 Mechanism

To perform self-tilt-up motion, two problems should be
addressed: resistance generated by gravity of body and forces
that drive the body to tilt up.

2.1.1 Gravitational resistance
In precessional motion (Figure 4), it is the gravitational

moment that causes the high-speed spinning body (like

spinning top) to make precession around a fixed point. When

the body does not spin, the gravity leads it to fall down. The

gravity acts differently if the body spins at different speeds.

Enlightened by this phenomenon, we settle a symmetrical

part, a flywheel (shown in Figure 1), inside the two-wheeled

inverted pendulum. The gravity of the body of inverted

pendulum will cause the body to exhibit precession just like

the spinning top when the flywheel spins at high speed. To

apply this approach, first we need to find a point in the body

that is fixed during the movement. Naturally, the midpoint of

axis O between the two wheels is chosen to be the fixed point.

To ensure that this point is fixed, we perform the force

analysis (shown in Figure 5).

Figure 1 3D model

Top motor
Flywhool

InsideShaft coupling

Bottom motor

Figure 2 Simplified configuration

Body

Flywheel

Figure 3 Prototype
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For the left wheel and the right wheel, we have:

FL2 þmwg ¼ NL

FLf 2 FL1 ¼ mwaL

TL 2 FLf R ¼ Iw1L

FLf ¼ mNL

aL ¼ 1LR

8>>>>>>>><
>>>>>>>>:

ð1Þ

FR2 þmwg ¼ NR

FRf 2 FR1 ¼ mwaR

TR 2 FRf R ¼ Iw1R

FRf ¼ mNR

aR ¼ 1RR

8>>>>>>>><
>>>>>>>>:

ð2Þ

Here, the subscript letters L and R denote parameters of the

left and right wheel, respectively. The variables in equations

(1) and (2) are defined as follows:

R radius of the wheel;
I moment of inertia of the wheel;
1 angular acceleration;
a acceleration;
mw mass of the wheel;
m dynamic coulomb coefficient;
T torque on the wheel;
Ff friction force; and
F, N forces on the wheel.

Derived from equations (1) and (2):

ðFR1 2 FL1Þ ¼
1

R
ððTR 2 TLÞ2 ðmwR

2 þ IwÞð1R 2 1LÞÞ ð3Þ

As it can be seen from equation (3), to guarantee the point O

fixed during the movement, the force FR1 (F0
R1) should be

equal to FL1 (F0
L1) and Vo1 equal to Vo2 (i.e. 1R should be

equal to 1L). Thus, TR is equal to TL (their directions

are opposite). However, it is difficult to satisfy the condition

TR ¼ TL and FR1 ¼ FL1; we usually take the velocities Vo1

equal to Vo2 to approximately realize the fixed point. We find

that it does not affect the self-tilt-up motion analysis. To

simplify the analysis, we assume that they are equal to each

other. With the point O fixed during the movement, the

gravitation of body acts as moment instead of force. And the

moment will cause a high-spinning rigid body and exhibits

precessional motion rather than falling down.

2.1.2 The forces to perform tilt-up movement
Next, we will address how the body is to tilt up by itself. We

know that the angular momentum vector L always overlaps

with symmetry axis of body. Thus, the movement of vector L

can represent body. According to equation M ¼ dL/dt, the

direction of the moment must point upward. Here, we assume

that the wheels roll on the ground without slipping.
For system of forces on body and flywheel (treated as a

whole here) in plane XOY (shown in Figures 5 and 6) about

point O:

M0
1 ¼ 2mgh sin uþ T 0

R 2 T 0
L ¼ 2mgh sin u

M0
2 ¼ ðF 0

L1 þ F 0
R1Þd

M0
3 ¼ ðF 0

R2 2 F 0
L2Þd ¼ 0

8>><
>>:

ð4Þ

and:

Figure 4 Precessional motion
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M0 ¼ M0
3 · iþM0

1 · jþM0
2 ·k ¼ dL=dt

dL ¼ dL0
x · iþ dL0

y · jþ dL0
z ·k

8<
: ð5Þ

Here, M0 is the external resultant moment functioning on

body and flywheel.
So:

dL0
x ¼ 0

dL0
y ¼ M0

1dt ¼ 2mgh sin u · dt

dL0
z ¼ M0

2dt ¼ ðF 0
L1 þ F 0

R1Þd · dt

L ¼
R
dL0

y · jþ
R
dL0

z ·kþ L0

8>>>>><
>>>>>:

ð6Þ

The above component moments and component angular

momentums are shown in Figures 6 and 7.
In Figure 7, moment M0

1 (generated by gravity) leads initial

angular momentum L0 to make precessional motion. Since

M0
1 is always normal to the angular momentum, L, M0

1 only

changes the direction of L. However, moment M0
2 is different

from M0
1. The former alters the angular momentum L both in

direction in and magnitude. So only moment M0
2 can drive the

body to tilt up. In fact, these two moments do not interfere

with each other. According to instant movement analysis in

Figure 7, the trajectory of body is shown in Figure 8. Rising

and vibrating of body coexist, where vibrating is the result of

moment M0
1 and rising is due to moment M0

2. As can be seen

from equations (4)-(6), whether TR ¼ TL or FR1 ¼ FL1

does not affect the moments analysis.

Since the moment M0
2 tilts the angular momentum L up, to

tilt up the body successfully, the moment should be large

enough (the larger L will bring larger dLz and shorter process

to erect). For a prototype, its weight, height, moment of

inertia, center of mass (CM), etc. are determinate. So it will

realize self-tilt-up when the angular velocity of flywheel is

large enough to get enough angular momentum L0 and

moment M0
2. In fact, with large enough L0 and M0

2, the last

segment of the trajectory of CM in Figure 8 gradually

converges to a constant height. We prove it by both simulation

(shown in Figure 13) and experiment on our prototype

(shown in Figure 14).

2.2 Analysis

The two wheels have to rotate in opposite directions in order

to achieve fixed-point movement. With the flywheel spinning,

there exist four combinations of two-wheel rotation and

flywheel spinning (shown in Figure 9).
With the moment M0

2 pointing upward and the angular

momentum L representing movement of body, only case (d)

satisfies the condition to tilt the body up.
The above is just qualitative analysis, and we will also

analyze what factors play important roles in the self-tilt-up

motion. Before the derivation, we first define the notations.

The body parameters have the subscript b, the flywheel

parameters have the subscript r, and the wheel parameters

have the subscript w. Some other definitions are listed in

Table I.
The relationships of these three frames (Figures 10 and 11)

are defined as follows:
1 Axis OX0 overlaps with axis OZ, axis OZ0 overlaps with

negative axis OX, and axis OY0 overlaps with OY.
2 Axis OX00 overlaps with axis OX0, axis OZ00 overlaps with

axis OZ0, and axis OY00 overlaps with OY0.

For the body:

I1 _vbx0 2 ðI2 2 IÞvby0vbz0 ¼ Mbx0 ð7Þ
I2 _vby0 2 ðI3 2 IÞvbz0vbx0 ¼ Mby0 ð8Þ
I3 _vbz0 2 ðI1 2 IÞvbx0vby0 ¼ Mbz0 ð9Þ

Here, the moment Mb ¼ ½Mbx Mby Mbz�T represents all the

external forces applied on the body. Mbx, Mby and Mbz

represent components of Mb on axes OX0, OY0 and OZ0,
respectively:

Mb ¼ dj1 £ ðF0
R1 2 F0

L1Þ þ dj1 £ ðF0
R2 2 F0

L2Þ þ h

£GþM0
r þ ðT0

R þ T0
LÞ

¼ dðF 0
R1 þ F 0

L1Þk2mgh sin u · j1 þ M0
r ð10Þ

M0
r is the moment that the flywheel function on it, and

M0
r þ Mr ¼ 0. Besides, it we should find out the Euler’s angles

qb ¼ ðcb ub fbÞT of the body frame and it is q_b ¼ ðv1 u_ 0ÞT
and derives its component on body:

vbx0 vby0 vbz0
h iT

¼ v1sin u 2 _u v1cos u
h iT

ð11Þ

Substituting equations (10) and (11) into equation (8), we

obtain:

2I2
€u2 ðI3 2 I1Þv2

1 sin u cos u ¼ 2mgh sin uþM0
r · j1 ð12Þ

Figure 7 Analysis for instant movement of body
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For the flywheel:

I 00 _vrx00 2 ðI 00 2 I 01Þvry00vrz00 ¼ Mrx00 ð13Þ
I 00 _vry00 2 ðI 01 2 I 00Þvrz00vrx00 ¼ Mry00 ð14Þ

I 01 _vrz00 ¼ Mrz00 ð15Þ

Here, Mr ¼ ½Mrx Mry Mrz�T , Irx000 ¼ Iry00 ¼ I 00, Irz00 ¼ I 01. Mrx,
Mry and Mrz represent components of Mr on axes OX00, OY00

and OZ00, respectively.
Its Euler’s angles are qr ¼ ðcr ur frÞT ¼ðv1t þ 3p=2 u p=2þ

v2tÞT . So _qr ¼ ðv1
_u v2ÞT and then derives its components on

flywheel:

_vrx00 ¼ v1sin u cosv2t 2 _u sinv2t ð16Þ
_vry00 ¼ 2v1sin u sinv2t 2 _u sinv2t ð17Þ

_vrz00 ¼ v1cos uþ v2 ð18Þ

Because the flywheel is mounted inside the body and their
symmetry axes always overlap with each other, their unit vectors
have the following relationship:

i1

j1

2
64

3
75 ¼

cosv2t 2sinv2t

sinv2t cosv2t

2
64

3
75

i2

j2

2
64

3
75 ð19Þ

So j1 ¼ sinv2t · i2 þ cosv2t · j2. Substitute the relation and

M0
r ¼ -Mr into equation (12) and have:

I2
€uþ ðI3 2 I1Þv2

1 sin u cos u ¼ mgh sin u

þ sinv2t ·Mr · i2

þ cosv2t ·Mr · j2 ð20Þ

Thus, multiply sinv2t to equation (13) and cosv2t to equation

(14) and substitute them into equation (20). Then, combining

equations (16)-(18) and (20), we finally get:

Figure 9 Four direction combinations (a), (b), (c) and (d)

(a) (b)

(c) (d)
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ðI2 þ I 00Þ €u ¼ mgh sin u2 I 01v1v2sin uþ ðI1 2 I3 þ I 00

2 I 01Þv2
1 cos u sin u ð21Þ

or:

€u ¼ mðmgh2 I 01v1v2Þsin uþ lv2
1 cos u sin u ð22Þ

Here:

m ¼ 1=ðI2 þ I 00Þ; l ¼ ðI1 2 I3 þ I 00 2 I 01Þ=ðI2 þ I 00Þ

Obviously, equation (22) is a second-order nonlinear

differential equation, and its solution can be expressed as an

elliptic function.
Suppose that the two-wheeled inverted pendulum initially

lies on the ground, i.e. the angle u ¼ p/2. When the mobile

inverted pendulum drives to tilt up, the angular u becomes less

and less. So to tilt up, the acceleration of u should be negative,

i.e. €u , 0. As u ¼ p/2 at first, cosu ¼ 0 and lv2
1 cos u sin u ¼ 0,

the condition for a two-wheeled inverted pendulum to tilt up is:

mgh2 I 01v1v2 , 0 ð23Þ

In addition, vwr ¼ v1d;v1 ¼ vwr=d so:

vwv2 .
mghd

I 01r
ð24Þ

For a developed prototype, the geometric parameters like m, h,

d, r and I01 are determinate, so it is possible to realize self-tilt-up

when the angular velocity of flywheel v2 and angular velocity

of wheels vw are high enough to satisfy the inequality in

equation (24).

2.2.1 Discussion
. Referring to inequality (24), we find that a mobile-

inverted pendulum with narrow body and large wheels will

be easier to perform self-tilt-up motion.
. For the purpose to self-tilt up successfully, the angular

velocities v2 and vw need to be large enough to satisfy the

inequality (24). But in fact, with body erecting the

expression lv2
1 cos u sin u in equation (22) will first

increase to the maximum when u ¼ p/4 and then

decrease to zero at u ¼ p/2. Whether it is positive is a

factor that holds back the self-tilt-up motion.
. For the energy concerns, the self-tilt-up process should be

as short as possible. It means that the angular acceleration
€u should be large enough. So choosing v2 and vw just to

meet the condition in inequality (24) is not enough. The

self-tilt-up motion should be completed in several seconds

to save energy.
. With flywheel angular velocity v2 determinate, how will

the €u change when v1 increases? As it can be seen from

equation (22), let v1 change to v1 þ Dv1 and:

d ¼ €uðv1 þ Dv1Þ2 €uðv1Þ

¼ 2mI 01v2Dv1sin uþ 2lv1Dv1cos u sin u

¼ 2mDv1sin uðI 01v2 2 2ðI1 2 I3 þ I 00 2 I 01Þv1cos uÞ

ð25Þ

where regarding €u as the function of v1 and neglecting the

second-order part of Dv1. In our prototype, we have:

Figure 10 Initial frame and body frame

Z
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X'

0

Y'

X
Y

O1

O
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ω1t

Figure 11 Flywheel frame

Z''

O

Y''
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Table I Parameters and variable name

Symbol Parameters and variable name

O Middle point of axis O1O2

d jO1O2j ¼ 2d

O 2 xyz Inertial frame

O2 X0Y0Z0; i1; j1; k1 Frame attached to the body and its unit

vectors

O2 X00Y00Z00; i2; j2; k2 Frame attached to the flywheel and its unit

vectors

m Mass of the body

g gravitational acceleration

G Gravitational center of the body

h h ¼ jOGj

I1; I2; I3 Moment of inertia of the body

Irx00 ; Iry00 ; Irz00 Moment of inertia of the flywheel

u Inclination angle of the body

v1 Angular velocity of the body about OZ axis seen

from top view

v2 Angular velocity of the flywheel

vw Angular velocity of the wheels

r Radius of both wheels

vbx0 ;vby0 ;vbz0 Component of absolute angular velocity of the

body on frame O 2 X0Y0Z0

vrx00 ;vry00 ;vrz00 Component of absolute angular velocity of the

flywheel on frame O 2 X00Y00Z00
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I 01v2 2 2ðI1 2 I3 þ I 00 2 I 01Þv1cos u . 0. Therefore,

d , 0.

Thus, with v1 increasing (need vw increasing), the

magnitude of the angular acceleration €u will increase

too. So the faster the wheels rotate, the shorter the process

of self-tilt-up motion will be. However, when the wheels

rotate faster, it means much more energy is consumed

(For the moment inertia of body is much larger than that

of flywheel.) So there exists an optimal velocity to

minimize the energy consumption. For different

prototype, the proper angular velocity of wheels is

different, which is also relative to the angular velocity of

flywheel. Usually, the optimal parameters are determined

by experiments.
. When the pendulum body first tilts up to top, the angular

velocity relative to axis O1O2 is not zero. So it will fall

down at the top position and then repeat the tilt-up

motion until the angular velocity becomes zero at last.

Thus, the self-tilt-up motion is a multiply periodic

process, which will be illustrated in Section 3.
. As shown in equation (22), if the angular velocities v1 and

v2 are determined, the inclination angle of the body u is a

function of time t. Generally, it is helpful to know the

numerical value of t when u ¼ 0. As mentioned before, the

solution for equation (22) can be expressed as an elliptic

function. The solution of (22) is:

t ¼ 1ffiffiffiffiffiffi
2h

p FðuÞ ð26Þ

where:

FðuÞ ¼
Z p=2

u

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosb2k2cos2b

p db

h ¼ ðI 01v1v2 2mghÞ=ðI2 þ I 00Þ
k2 ¼ x

2h
; x ¼ ðI1 2 I3 þ I 00 2 I 01Þv2

1=ðI2 þ I 00Þ

When u ¼ 0 (namely tilting up to upright position), F(0)

is a complete elliptic integral and its value can be

determined by looking up the elliptic integral table. Here,

t is the first time to tilt up to vertical position because the

upper limit of integration is p/2. We can also calculate

other period times except the first period where the upper

limit of integration is not p/2.

2.2.2 Self-tilt-up motion applied to balancing movement
For a normal mobile-inverted pendulum, the balancing of the

system is only achieved by considering dynamic effects. The

two wheels generally rotate in same directions. In this paper,

the self-tilt-up motion is a fixed-point movement and these

two wheels should rotate in opposite directions. There is a

contradiction between them. We settle it by linking them in

the process of movement or divide the two-wheeled inverted

pendulum movement into two phases:
1 When the inverted pendulum needs start to erect with its

body initially lying on the ground or falling to the ground,

the vehicle is switched to perform self-tilt-up motion.
2 Stabilizing control phase. These two phases will switch

according to the state of the system as shown in Figure 12.

3. Simulations and experiments

3.1 Simulations

According to the analysis above, a 3D model (shown in

Figure 13(a)) is built in ADAMS dynamic simulation

environment. In the 3D model, the dimensions of body and

flywheel are shown in Figure 13(b) and (c), respectively. The

diameters of both wheels are 160 mm. During the process

of simulation, two wheels rotate at same speed of 500 d *time

(d *time is the speed unit in ADAMS and 1d *time ¼ 1

degree/s) in opposite directions and the flywheel spins with

speed 36,000 d *time (i.e. 6,000 rpm). The height of the CM

is 43.065 mm. With the ADAMS simulation, we find that

trajectory of CM shows a conical helix (Figure 8). The CM

height relative to time is shown in Figure 13(d). The curve in

Figure 13(d) represents CM of body finally tilted up to

upright position, namely the vehicle self-tilts up successfully.

3.2 Experiment

To verify the simulation results, we drive our prototype with

flywheel spinning at speed about 6,000 rpm. Since the CM of

prototype is difficult to measure, we use its top point instead of

CM to examine if the vehicle can self-tilt up successfully.

Obviously, the trajectory of top point is a three-dimensional

curve. So to measure the height, a setup with three degree of

freedom is built. In our experiment, there is a small omni-

directional vehicle with a rod on it. (This small vehicle is placed

on a piece of glass to reduce disturbance to movement of

prototype.) The rod has a scale and a slide block can slide on it.

Apparently, this slide block has three degree of freedoms.

A second rod is mounted with one end attached to the slide

block. Another end of the latter rod links with a hinge joint to the

top of the body. The second rod is level placed horizontally.

Therefore, the scale of slide block is just the height of top point

of body during the self-tilt-up movement. We record some

scales of slide block and fit them as a curve. This curve is shown

in Figure 14(b).
The height of the prototype is 480 mm. The diameters of both

wheels are 160 mm and weight of body is about 3.2 kg. The

distance between centers of two wheels is 300 mm. As shown in

Figure 14(a), the height of box of body is 180 mm and the CM of

body is about 198 mm. The moment of inertia of flywheel about

its axis of rotation is 3.9997 £ 1024 kgm2. (The flywheel here is

different from that in ADAMS environment.) As shown in

Figure 1, there are two gears at each side. The teeth number in

the gears are 40 and 70, respectively; therefore, the drive ratio is

i ¼ 70/40 ¼ 1.75. The measured rotational velocity of output

axis of gear box is about 88.4 s21. Applying the above

parameters to inequality (24) and the result is shown in

Figure 14(b). In fact, according to inequality (24):

vw ¼ 88:4=i ¼ 50:51 s21;

v2 ¼ 6; 000 rpm ¼ 6; 000 £ 2 £ 3:1416=60

¼ 628:319 s21m ¼ 3:2 kg;

g ¼ 9:8 m=s2;h ¼ 0:198 m;

d ¼ 0:15 m; I01 ¼ 3:9997 £ 1024 kgm2; r ¼ 0:08 m;

vwv2 ¼ 3:174 £ 104mghd=I01r ¼ 2:911 £ 104

The calculation result is consistent with inequality (24).

The simulation model in Section 3.1 does not equate
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prototype in Section 3.2 because some parameter of prototype is

hard to measure. In fact, the configuration of 3D model is not

necessary to be exactly the same as the prototype. As it can be

seen from Figures 13(b) and 14(b), these two curves are similar.

Thus, we can conclude that the above analytic methods are valid

and the derived results are creditable.
In addition, as the solution for equation (22) is just result of

a period, to demonstrate how the angular velocity of flywheel

v2 and wheels speed vw affect the self-tilt-up motion, we

adopt the simulation method to verify the analysis results in

Section 2.2.1 discussion (d) above. Four cases simulation of

this 3D model perform:
1 v2 ¼ 6,000 rpm, vw ¼ 83.33 rpm;
2 v2 ¼ 6,000 rpm, vw ¼ 50 rpm;
3 v2 ¼ 7,000 rpm, vw ¼ 83.33 rpm; and
4 v2 ¼ 7,000 rpm; vw ¼ 50 rpm.

The final results are shown in Figure 15. In this figure, it

shows:
. the larger wheel angular velocity vw (corresponding v1

larger), the shorter time for the vehicle to tilt up; and
. with larger wheel angular velocity vw, the amplitude of

vibration will decrease faster. It is convenient to move

steadily.

So, we can conclude that the angular velocity of wheel plays

an important role in self-tilt-up motion after the self-tilt-up

motion condition in inequality (24) is satisfied.
In addition, we must consider when the switching between

self-tilt-up motion and normal dynamic movement occurs.

Some researchers adopt the linearized form of partial

feedback in dynamic movement analysis Baloh and Parent

(2003). When angle u # 100, the moment of inertia about

OZ-axis can be treated as constant and the error induced by

linearization is neglectable. So we define the switching time

ts,, i.e. when all the residual inclination angle u # 100. In

Figure 15, the switching time are: ts ¼ 3.10 s, ts ¼ 7.86 s,

ts ¼ 2.84 s and ts ¼ 6.82 s. Apparently, ts is a function of vw

and v2. With the switching time known, we can determine

when the self-tilt-up motion finish and switch to dynamic

balance movement. In fact, we can design a controller for the

vehicle that can switch to dynamic balance movement from

tilt-up motion when it first tilts up to u # 100 in the first

period.

In many literatures (Ha and Yuta, 1996; Grasser et al., 2002;

Kim et al., 2005; Jung and Kim, 2008; Ren et al., 2008;

Nawawi et al., 2007) the prototypes have common feature:

they are designed with high bodies. The vehicles are easier to

control when their bodies are higher. However, for the self-

tilt-up movement, higher body means more energy will be

consumed. Sometimes, two-wheeled vehicle with higher body

may not realize self-tilt-up movement according to inequality

(24). So the layout of vehicle with self-tilt-up ability is

different from the ones in the above literatures. To perform

stabilizing control, the body of vehicle should be as high as

possible. However, to implement self-tilt-up movement, the

body of vehicle should be as low as possible according to

inequality (24). Thus, a setup that can change the height of

the body is necessary when the vehicle is designed to apply to

environment where high body is necessary. This will be

considered in our future work.

4. Conclusions

In summary, this paper presents a self-tilt-up motion for a

two-wheeled inverted pendulum. With the analysis of the

dynamics, simulation demonstrations and prototype

development, the results show that the vehicle could

perform self-tilt-up motion without any assistance. The

principle of this self-tilt-up motion involves processional

motion of rigid body. We also pointed out the factors that play

important roles in influencing the performance of self-tilt-up

motion and then define the switching time for the motion to

switch to dynamic balance movement. As a future work, we

will design a controller that can drive the vehicle to perform

self-tilt-up motion and dynamic balance movement smoothly.
Traditional multi-wheels robots cannot work when they

overturn. However, the two-wheeled inverted pendulums with

self-tilt-up ability do not have this shortcoming. They can stand

up tokeepworkingeven if they fall down. A two-wheeled inverted

pendulum with self-tilt-up ability can be applied to many places.

Equipped with solar battery, it can be used as an independent

explorer. We can also deploy this type of vehicle in swarms for

planetary detection. For example, many small two-wheeled

inverted pendulums assist a lunar rover for exploration, samples

gathering, etc. Interesting directions for future work include the

cooperation of the two-wheeled inverted pendulums.

Figure 12 Switching between two phases
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