
 
 

 

  

Abstract—In order to realize the dual arm mobile robot 
control and simulation, a distributed robotic system is presented. 
The system provides the robot’s model building, path planning, 
robot task planning, simulation and actual robot control 
functions in an indoor environment. This paper is focused on 
two major issues: the distributed system’s modularity and the 
key technologies based on the robot’s key-values in robot 
construction and multi-robot simulation. Experiments were 
conducted in order to compare the performances of the 
proposed system with the performances of a former centralized 
system. The results show that the distributed system uses less 
system resources, has better real time performances and 
satisfies the requests of dual arm mobile robot. 

I. INTRODUCTION 
N recent years there is an increasing use of robot into fields 
of replacing human to fulfill complex and dangerous tasks. 
The robotic system must be reliable and coordinated while 

finishing different subtasks such as perception, planning and 
navigation. Thus some robotic platforms have been 
developed to test the control or coordination algorithms, and 
evaluate the robot performances. The Player/Stage/Gazebo 
project is an open architecture to provide robot control and 
simulation in 2D and 3D environment [1], [2]. Breve is a 
simulation environment meant for the development of 
artificial life in a physically simulated world. It uses a 
scripting language that allows control strategies and 
event-based reactions to the environment for large numbers 
of agents [3]. CARMEN [4] use the middleware framework 
MARIE (Mobile and Autonomous Robot Integrated 
Environment) [5] to build the mobile robot control and 
simulation system. However the problem that all of these 
systems have is that their robots are simple and the task 
planning and simulation for the movement of complex mobile 
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robots with redundant dual arm mobile robots can not be 
achieved. Our previous work [6] realizes a centralized 
simulation and control system. The user can easily program a 
dual arm mobile robot through graphical programming by 
editing a set of icons, preview and check the robot motion in a 
3D simulation environment. However, due to precise 
calculation, the system costs a considerable amount of 
computing resources, which makes it difficult to be used on a 
normal PC for multiple mobile robots simulations.  

Considering the above inconvenience, the robot producer 
YASKAWA Electric Corporation (Japan) and the Research 
Institute of Robotics in Shanghai Jiao Tong University 
(P.R.China) have initiated a project called “Simulation of 
Mobile Robots Navigation (SMRN)” based on their interest 
in distributed precise simulation and control for dual arm 
mobile robots. Thus a distributed navigation simulation 
system based on CORBA [7]-[9] was developed. Some key 
technologies, such as robot construction and multi-robot 
simulation mechanism are proposed to improve the system’s 
real time performance. 

The remainder of the paper is organized as follows: Section 
II introduces the dual arm robot SmartPal, section III presents 
our distributed control and simulation system architecture. 
The proposed key technologies are proposed in section IV. 
Experiments and Results are shown in section V. 

II. DUAL-ARM MOBILE ROBOT 
The system which is presented in this paper has been 

realized on the dual-arm mobile robot SmartPal. By far it is 
mainly used as service robot in indoor environments. Fig. 
1shows the robot SmartPal used for experiments in an indoor 
environment. For manipulation, it is equipped with 7 DoF 
(degrees of freedom) arm and a finger hand. An 
omni-directional wheel platform serves for motion. The 
sensors equipped in the robot are a laser range sensor in the 
waist and 8 proximity sensors mounted on the 
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omni-directional wheel platform. The Liquid Crystal Display 
and touch panel are attached to the front of the robot’s upper 
body. They are used for displaying the robotic current internal 
state (e.g. working, waiting, exceptional) or for user 
interaction (e.g. choosing the work model). 

III. SYSTEM ARCHITECTURE 
The architecture of the distributed system is presented in 

fig. 2. It includes three functional parts: the MapEditor server, 
the simulation server and some robot clients. The MapEditor 
server is responsible for indoor simulation environment 
model building and path planning services. The simulation 
server provides the virtual sensor and 2D simulation services. 
Its omni database keeps records of all the information of the 
simulation. The robot client is the client which invokes the 
methods from the CORBA server and presents the 3D 
simulation result to the users.  

Due to CORBA, the service implement object in these 
servers can be remotely but transparently invoked from the 
clients regardless of their hardware, operating systems, and  
programming language[7]-[9]. All of the servers and clients 
can be distributed on different computers using CORBA 
middleware the JavaTM IDL developed by Sun 
Microsystems[10]. JavaTM IDL is freely available and fully 
compliant implementation of the CORBA standard. It 
provides interoperability between applications on different 
machines in heterogeneous distributed environments and 
seamlessly interconnects multiple object systems. Each 
module of system is presented as follows: 

A. MapEditor Server 
In order to realize a multiple robot simulation, a unique 

virtual environment should be built using the MapEditor 
server. The server contains two agents: a map building agent 

and a path planning agent. The user can build the simulation 
environment by a map building agent, save the objects’ 
shapes, positions and other geometrical data in a geometrical 
map, and save the path nodes in a topological map (fig. 3); 

The path planning agent is used to determine a feasible 
path between the start and goal points specified by the user. 
Fig. 4 shows a communication example between the robot 
client and the Path Planning agent server. In fig. 4(a), the 
client specifies the start point and the end point, calls the 
“getPath” method using the CORBA interface, and receives a 
set of path points from path planning agent server. Fig. 4(b) 
shows the map topological information. Fig. 4(c) shows the 
format of path points returned by the server.  

B. Simulation Server 
 In the Simulation Server, the communication manage 

agent is responsible to record all the registered information 
from the clients and to realize a simple load balance. All robot 
clients wanting to join in the simulation must first register 
with this agent. Only the manage agent accepts the client’s 
request and puts the client’s name in the register list, the robot 
client can call the methods using the CORBA interface. If the 

   
                          (a)                                                       (b) 
Fig. 3 Two maps in a MapEditor: (a)Geometrical map;(b)Topological map 

 
Fig. 2 The Distributed System Architecture based on CORBA 
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number of clients reaches the upper limit of permissions, the 
communication manage agent will allow no more other 
clients to log in the server. 

All the simulation information is stored in the Omni 
Database. It is structured in an elevators data list and a floor 
data list. This data structure makes it easier to exchange the 
single floor’s data between the Omni database (simulator 
server) and the Data pool of a robot client. 

The 2D simulator server loads the data from the Omni 
database, draws the simulation scene in 2D image. This tool is 
capable of displaying video of the simulation scene, and 
allowing the simulation administrator to monitor the 
simulation process in the whole building. In the monitor panel, 
users can observe different floor scenes, see the robots’ 
positions, velocities and receive the data from the virtual 
sensor.  

The virtual sensor server provides virtual laser range finder 
and proximity sensor agent’s services. It receives the robot 
client’s request with parameters such as the position of the 
robot and the position and direction of the virtual sensor, and 
returns laser scan angle, distance information. The 
information is similar with the information returned by the 
real sensor, and used by the virtual robot to detect the 
positions of the obstacles. 

C. Robot Client 
The robot agent is a development module for users to 

program, control and observe the virtual robot in simulation 
environment or actual robot in the real world. It is structured 
in the CORBA client that calls methods from different servers. 
One robot agent stands for one virtual or actual robot. The 
components in robot agent include: 

 Graphic programming environment (GPE): it is 
used to specify the robot’s task by using a list of 
icons. Fig. 5 shows the GPE interface, here one icon 
describes one movement of the robot and using the 
icons the user can teach  the robot to go to another 
floor, go to another room and pick a piece of paper, 
etc. 

 Control Agent: There are two modes: virtual robot 
mode and real robot mode. In the virtual mode, the 

agent calls SmartPal robot’ virtual function library 
[11] to calculate the each part’s position of the robot, 
and return results to the GPE. Then the GPE sends 
the robot’s data to data pool for 3D simulation in 
robot client. In the real robot mode, the agent can 
load the codes to a real robot to execute the related 
task. 

 Data Pool: It is used to save simulation data related 
with the current robot. For example, if a virtual 
robot is in floor 2 in simulation environment, its data 
pool only keeps the objects’ information on floor 2. 

 3D Simulator & Monitor Agent: It loads the 
simulation data from the Data pool, and constructs 
the robot in the 3D virtual environment. 

IV. KEY TECHNOLOGIES IN THE DISTRIBUTED SIMULATION 

A. Robot’s Key-Values Definition and the CORBA 
Interface 
The appearance of the virtual robot is constructed by  

java3D, the virtual robot is decomposed into several basic 
parts which are described by VRML (Virtual Reality 
Modeling Language). To assemble a SmartPal robot, the 
basic parts are defined as Branch Group and the robot Joints 
defined as Transform Group, these joints and parts of a 
SmartPal robot, shown in fig. 5, are described in Java3D as a 

node chain.  
We define the robot joints’ angles, positions and the 

distance values in x and y directions as the key-values. Only 
limited key-values are needed to construct the robot.  

In order to realize key-values data transfer in CORBA 
system, we define the robot’s key-values structure in the 
following interface: 

module DualArmRobot { 
typedef struct _jointData { 
// the definition of structure of robot joint 
string joint_ID;//joint’s name 
double joint_Angle;// joint’s angle 
double joint_Position_x;//x coordinate value of position 
double joint_Position_y;//y coordinate value of position 
double joint_Distance_x;//joint distance in x direction 

 
Fig. 4 Path planning communication: (a) Communication process (b) Metric 

and topological identifier (c) Data structure 

Fig. 5 Architecture of Robot basic Nodes 
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double joint_Distance_y;//joint distance in y direction 
} joint; 
typedef sequence<joint> jointList; 
typedef struct _robotKeyValue{ 
string robot_ID;//robot name 
jointList keyValues;//robot’s key values 
} robotKeyValues; 
interface SmartPal { 
void send_KeyValues(in robotKeyValues RKV, in string 

DatabaseName); 
//send the robot key-value to database or data pool 
localEnvrionment load_Loacalenvironment(in long 

robot_currentFloor, in string bName); 
//get current local environment data form Omni database 
 }; 

}; 

B. Robot’s Construction and Motion in 3D Environment 
In order to simplify transformation calculation, the origin 

of each coordinate frame is set on rod joint. The axis Zi 
always overlaps the rotation axis of rod joint i, and axis Xi 
always on the common normal that Zi-1 makes with Zi. Fig. 6 
displays the coordinate frame chain, rotation directions and 
angles of robot rotation. 

Using D-H parameters, the relation between Rodi-1 and 
Rodi can be described with four homogeneous 
transformations. Knowing these homogeneous 
transformations, the transformation matrix can be calculated 
as 

),()0,0,(),0,0(),( iiii xRotaTransdTranszRotA ωθ=  

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
−

−

=

1000
0 iii

iiiiii

iiiiiii

dCS
iSaSCCCS

CaSSCSC

ωω
θωθωθθ
θωθωθθ

        (1) 

where Ai is the transformation matrix representing 
transformation from coordinate i-1 to coordinate i. 

Rot(z, iθ ), Trans(0,0,d), Trans(ai,0,0), Rot(x, iω ) are the 
four homogeneous transformations by which we transform 
coordinate i-1 to coordinate i. Rot(z, iθ ) means rotation 

around Z axis by iθ angle. Trans(ai,0,0) means translation 
from original point to a new point with increment ai in X 
direction, 0 in Y and Z directions. ai is the length of the 
common perpendicular and di is the algebraic distance along 
axis Zi-1 to the point where the common perpendicular to axis 
Zi is located. iθ  is the torsion angle, about axis Zi-1, that the 
common perpendicular Xi makes with Xi-1. iω is the projected 
angle, about Xi, that axis Zi makes with axis Zi-1. 

Knowing the transformation from coordinate i-1 to 
coordinate i, the transformation matrix from coordinate i to 
coordinate n is derived through continued product from Ai 
to An: 

niin
i AAAT L1

1
+

− =                   (2) 

Where n
i T1−  is the transformation from coordinate n to 

coordinate i-1. 
In this way, the position of each joint in robot structure is 

described. The location of mobile robot is determined by 
transformation from the coordinates of the robot base frame 
and the Cartesian coordinates of the environment. Thus the 
system constructed the robot body and realized the robot 
moving and motion simulation. A viewing class of objects 
was defined to provide functions for matrix transformations, 
in order to support changes in the viewing angle and shape 
transformation. 

C. Multi-Robot Simulation Mechanism 
Java multi-threads are used to realize the multi-robot 

simulation. Two threads are set up as a manipulating thread 
and a detecting thread. In order to improve the real time 
performance of system, a data pool is created in client to store 
the current local environment and robots’ information. So the 
robot client need not always invoke the whole Omni database 
information in the server side, but just call the local 
environment data from his own data pool. The two above 
threads access the data pool alternately. There’s a producer 
and consumer relationship between them. 

As presented in fig. 7, the manipulate thread calls the 
control agent to get the current robot information, updates 

Fig. 6 Coordinate Chain on Robot Rods 
 

Fig. 7 Multi-robot Simulation Mechanism 
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data in data pool. The data pool also exchange data with the 
omni database. For more efficiency, if a robot is positioned at 
a certain floor, in the client’s data pool. Only the data of 
robots and objects on that specific floor is loaded. The detect 
thread checks the data pool constantly and, as soon as there is 
a change in the data pool, the robot is rebuilt in 3D simulator 
and monitor agent. This mechanism is implemented for all the 
robots in a multi-robot system. 
 

V. EXPERIMENTS AND RESULTS 
There are performed experiments in order to compare the 

system load between the centralized system [6] and the 

distributed system which is used for controlling real robot or 
simulation one.  

First, the centralized system is used to perform multiple 
robot simulation. The computer that is used has a Celeron (R) 
CPU 2.40GHz and 1230M usable memory (512M physical 
memory and 718M virtual memory). The operating system is 
Microsoft Windows XP Professional with Service Pack 2. Fig. 
8 presents utilization rate of the CPU (fig. 8(a)) and the 
memory (fig. 8(b)) in the centralized system. The utilization 
rate of both resources increases linearly with the number of 
robots in the simulation increasing. The experiment in which 
four or more robots were considered failed for lacking 
memory.   

 
Fig.10 Response time in distributed system communication: (a) Instantaneous response time; (b) Average response time 

 
Fig. 9 Distributed system load: (a) Server computer CPU utilization; (b) Server computer memory utilization 

 
Fig. 8 Centralized system load: (a) CPU utilization; (b) Memory utilization 
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In the distributed system, the MapEditor server and the 
simulation server are installed on a server computer that 
provides the services for multiple clients. Five robot clients 
are installed on other five separate computers. All the 
computers have the same hardware and software structure as 
the computer used for the centralized system tests. The 
computers were interconnected via a fast Ethernet (10 Base T) 
for control-communication. Fig. 9 presents the rate of the 
CPU and memory utilization with the increase of the number 
of connected clients. Both the CPU usage and memory usage 
of the distributed systems are increasing slower than in the 
case of the centralized system. In the case that three clients 
connect to the server computer, for a three robot simulation, 
fig. 9(b) shows that the server computer only spends 63 MB 
of memory, and the CPU average utilization is 26.57% (fig. 
9(a)). The maximum CPU usage is 43.9% which is smaller 
than in the case of the centralized system. 

The advantage brought by the distributed system consists 
in less CPU and memory usage. However, its shortcoming is 
that the clients need longer response time between the start of 
a method invocation and the arrival of the returned data [7]. 
The fig. 10(a) presents the instantaneous response time 
recorded over 20 seconds of simulation. The average 
response time value increases with the number of robots in 
the simulation increasing, as shown in fig. 10(b). In the case 
that five clients call the service from the server, the maximum 
of instantaneous response time is less than 100ms value that 
meets the requirements of a mobile robot simulation. 

VI. CONCLUSIONS 
In this paper, a CORBA-based distributed programming 

system is proposed to realize multiple dual arm mobile robots’ 
control and simulation. Using the CORBA architecture, it’s 
easy to install the servers and the multiple robot clients on 
different computers. Each client processes computationally 
expensive tasks such as calculating the related robot’s 
key-value, rebuilding of the robot and its local environment 
scene. Compared to our former centralized dual arm robot 
system, the proposed distributed system results in less usage of 
the system’s resources and improved real-time performances 
satisfying the requirements of a complex multi mobile robots 
simulation. 
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