

Abstract—In order to realize the dual arm mobile robot
control and simulation, a distributed robotic system is presented.
The system provides the robot’s model building, path planning,
robot task planning, simulation and actual robot control
functions in an indoor environment. This paper is focused on
two major issues: the distributed system’s modularity and the
key technologies based on the robot’s key-values in robot
construction and multi-robot simulation. Experiments were
conducted in order to compare the performances of the
proposed system with the performances of a former centralized
system. The results show that the distributed system uses less
system resources, has better real time performances and
satisfies the requests of dual arm mobile robot.

I. INTRODUCTION
N recent years there is an increasing use of robot into fields
of replacing human to fulfill complex and dangerous tasks.
The robotic system must be reliable and coordinated while

finishing different subtasks such as perception, planning and
navigation. Thus some robotic platforms have been
developed to test the control or coordination algorithms, and
evaluate the robot performances. The Player/Stage/Gazebo
project is an open architecture to provide robot control and
simulation in 2D and 3D environment [1], [2]. Breve is a
simulation environment meant for the development of
artificial life in a physically simulated world. It uses a
scripting language that allows control strategies and
event-based reactions to the environment for large numbers
of agents [3]. CARMEN [4] use the middleware framework
MARIE (Mobile and Autonomous Robot Integrated
Environment) [5] to build the mobile robot control and
simulation system. However the problem that all of these
systems have is that their robots are simple and the task
planning and simulation for the movement of complex mobile

Manuscript received December 23, 2007. This work was supported in part

by the National High Technology Research and Development Program of
China under Grant 2006AA04Z261; the authors gratefully acknowledge the
support from YASKAWA Electric Cooperation for supporting the
collaborative research funds and the SmartPal robot. We address our thanks
to Mr. Ikuo Nagamatsu and Mr. Kazuhiko Yokoyama at YASKAWA for
their cooperation. Also we thank Ms. Draguna Vrabie and Professor Frank L.
Lewis at the University of Texas at Arlington (UTA) for giving some
valuable suggestions.

Cao Qixin is with the Research Institute of Robotics, Shanghai Jiao Tong
University, Shanghai, CO 200240, P.R.China (corresponding author phone:
086-021-34206790; fax: 086-021-34206790; e-mail: qxcao@sjtu.edu.cn).

Zhang Zhen is with the Research Institute of Robotics, Shanghai Jiao
Tong University, Shanghai, CO 200240, P.R.China. (e-mail:
zhangzhen51@yahoo.com.cn).

Gu Jiajun is with the Research Institute of Robotics, Shanghai Jiao Tong
University, Shanghai, CO 200240, P.R.China. (e-mail:
kingjiajun@sjtu.edu.cn).

robots with redundant dual arm mobile robots can not be
achieved. Our previous work [6] realizes a centralized
simulation and control system. The user can easily program a
dual arm mobile robot through graphical programming by
editing a set of icons, preview and check the robot motion in a
3D simulation environment. However, due to precise
calculation, the system costs a considerable amount of
computing resources, which makes it difficult to be used on a
normal PC for multiple mobile robots simulations.

Considering the above inconvenience, the robot producer
YASKAWA Electric Corporation (Japan) and the Research
Institute of Robotics in Shanghai Jiao Tong University
(P.R.China) have initiated a project called “Simulation of
Mobile Robots Navigation (SMRN)” based on their interest
in distributed precise simulation and control for dual arm
mobile robots. Thus a distributed navigation simulation
system based on CORBA [7]-[9] was developed. Some key
technologies, such as robot construction and multi-robot
simulation mechanism are proposed to improve the system’s
real time performance.

The remainder of the paper is organized as follows: Section
II introduces the dual arm robot SmartPal, section III presents
our distributed control and simulation system architecture.
The proposed key technologies are proposed in section IV.
Experiments and Results are shown in section V.

II. DUAL-ARM MOBILE ROBOT
The system which is presented in this paper has been

realized on the dual-arm mobile robot SmartPal. By far it is
mainly used as service robot in indoor environments. Fig.
1shows the robot SmartPal used for experiments in an indoor
environment. For manipulation, it is equipped with 7 DoF
(degrees of freedom) arm and a finger hand. An
omni-directional wheel platform serves for motion. The
sensors equipped in the robot are a laser range sensor in the
waist and 8 proximity sensors mounted on the

A Distributed Control and Simulation System for Dual Arm Mobile
Robot

Cao Qixin, Member, IEEE, Zhang Zhen, Student, IEEE, Gu Jiajun

I

Fig. 1 SmartPal robot

Proceedings of the 2007 IEEE International Symposium on
Computational Intelligence in Robotics and Automation
Jacksonville, FL, USA, June 20-23, 2007

FrCT2.2

1-4244-0790-7/07/$20.00 ©2007 IEEE. 450

Authorized licensed use limited to: Shanghai Jiao Tong University. Downloaded on April 24, 2009 at 09:36 from IEEE Xplore. Restrictions apply.

omni-directional wheel platform. The Liquid Crystal Display
and touch panel are attached to the front of the robot’s upper
body. They are used for displaying the robotic current internal
state (e.g. working, waiting, exceptional) or for user
interaction (e.g. choosing the work model).

III. SYSTEM ARCHITECTURE
The architecture of the distributed system is presented in

fig. 2. It includes three functional parts: the MapEditor server,
the simulation server and some robot clients. The MapEditor
server is responsible for indoor simulation environment
model building and path planning services. The simulation
server provides the virtual sensor and 2D simulation services.
Its omni database keeps records of all the information of the
simulation. The robot client is the client which invokes the
methods from the CORBA server and presents the 3D
simulation result to the users.

Due to CORBA, the service implement object in these
servers can be remotely but transparently invoked from the
clients regardless of their hardware, operating systems, and
programming language[7]-[9]. All of the servers and clients
can be distributed on different computers using CORBA
middleware the JavaTM IDL developed by Sun
Microsystems[10]. JavaTM IDL is freely available and fully
compliant implementation of the CORBA standard. It
provides interoperability between applications on different
machines in heterogeneous distributed environments and
seamlessly interconnects multiple object systems. Each
module of system is presented as follows:

A. MapEditor Server
In order to realize a multiple robot simulation, a unique

virtual environment should be built using the MapEditor
server. The server contains two agents: a map building agent

and a path planning agent. The user can build the simulation
environment by a map building agent, save the objects’
shapes, positions and other geometrical data in a geometrical
map, and save the path nodes in a topological map (fig. 3);

The path planning agent is used to determine a feasible
path between the start and goal points specified by the user.
Fig. 4 shows a communication example between the robot
client and the Path Planning agent server. In fig. 4(a), the
client specifies the start point and the end point, calls the
“getPath” method using the CORBA interface, and receives a
set of path points from path planning agent server. Fig. 4(b)
shows the map topological information. Fig. 4(c) shows the
format of path points returned by the server.

B. Simulation Server
 In the Simulation Server, the communication manage

agent is responsible to record all the registered information
from the clients and to realize a simple load balance. All robot
clients wanting to join in the simulation must first register
with this agent. Only the manage agent accepts the client’s
request and puts the client’s name in the register list, the robot
client can call the methods using the CORBA interface. If the

 (a) (b)
Fig. 3 Two maps in a MapEditor: (a)Geometrical map;(b)Topological map

Fig. 2 The Distributed System Architecture based on CORBA

FrCT2.2

451

Authorized licensed use limited to: Shanghai Jiao Tong University. Downloaded on April 24, 2009 at 09:36 from IEEE Xplore. Restrictions apply.

number of clients reaches the upper limit of permissions, the
communication manage agent will allow no more other
clients to log in the server.

All the simulation information is stored in the Omni
Database. It is structured in an elevators data list and a floor
data list. This data structure makes it easier to exchange the
single floor’s data between the Omni database (simulator
server) and the Data pool of a robot client.

The 2D simulator server loads the data from the Omni
database, draws the simulation scene in 2D image. This tool is
capable of displaying video of the simulation scene, and
allowing the simulation administrator to monitor the
simulation process in the whole building. In the monitor panel,
users can observe different floor scenes, see the robots’
positions, velocities and receive the data from the virtual
sensor.

The virtual sensor server provides virtual laser range finder
and proximity sensor agent’s services. It receives the robot
client’s request with parameters such as the position of the
robot and the position and direction of the virtual sensor, and
returns laser scan angle, distance information. The
information is similar with the information returned by the
real sensor, and used by the virtual robot to detect the
positions of the obstacles.

C. Robot Client
The robot agent is a development module for users to

program, control and observe the virtual robot in simulation
environment or actual robot in the real world. It is structured
in the CORBA client that calls methods from different servers.
One robot agent stands for one virtual or actual robot. The
components in robot agent include:

 Graphic programming environment (GPE): it is
used to specify the robot’s task by using a list of
icons. Fig. 5 shows the GPE interface, here one icon
describes one movement of the robot and using the
icons the user can teach the robot to go to another
floor, go to another room and pick a piece of paper,
etc.

 Control Agent: There are two modes: virtual robot
mode and real robot mode. In the virtual mode, the

agent calls SmartPal robot’ virtual function library
[11] to calculate the each part’s position of the robot,
and return results to the GPE. Then the GPE sends
the robot’s data to data pool for 3D simulation in
robot client. In the real robot mode, the agent can
load the codes to a real robot to execute the related
task.

 Data Pool: It is used to save simulation data related
with the current robot. For example, if a virtual
robot is in floor 2 in simulation environment, its data
pool only keeps the objects’ information on floor 2.

 3D Simulator & Monitor Agent: It loads the
simulation data from the Data pool, and constructs
the robot in the 3D virtual environment.

IV. KEY TECHNOLOGIES IN THE DISTRIBUTED SIMULATION

A. Robot’s Key-Values Definition and the CORBA
Interface
The appearance of the virtual robot is constructed by

java3D, the virtual robot is decomposed into several basic
parts which are described by VRML (Virtual Reality
Modeling Language). To assemble a SmartPal robot, the
basic parts are defined as Branch Group and the robot Joints
defined as Transform Group, these joints and parts of a
SmartPal robot, shown in fig. 5, are described in Java3D as a

node chain.
We define the robot joints’ angles, positions and the

distance values in x and y directions as the key-values. Only
limited key-values are needed to construct the robot.

In order to realize key-values data transfer in CORBA
system, we define the robot’s key-values structure in the
following interface:

module DualArmRobot {
typedef struct _jointData {
// the definition of structure of robot joint
string joint_ID;//joint’s name
double joint_Angle;// joint’s angle
double joint_Position_x;//x coordinate value of position
double joint_Position_y;//y coordinate value of position
double joint_Distance_x;//joint distance in x direction

Fig. 4 Path planning communication: (a) Communication process (b) Metric

and topological identifier (c) Data structure

Fig. 5 Architecture of Robot basic Nodes

FrCT2.2

452

Authorized licensed use limited to: Shanghai Jiao Tong University. Downloaded on April 24, 2009 at 09:36 from IEEE Xplore. Restrictions apply.

double joint_Distance_y;//joint distance in y direction
} joint;
typedef sequence<joint> jointList;
typedef struct _robotKeyValue{
string robot_ID;//robot name
jointList keyValues;//robot’s key values
} robotKeyValues;
interface SmartPal {
void send_KeyValues(in robotKeyValues RKV, in string

DatabaseName);
//send the robot key-value to database or data pool
localEnvrionment load_Loacalenvironment(in long

robot_currentFloor, in string bName);
//get current local environment data form Omni database
 };

};

B. Robot’s Construction and Motion in 3D Environment
In order to simplify transformation calculation, the origin

of each coordinate frame is set on rod joint. The axis Zi
always overlaps the rotation axis of rod joint i, and axis Xi
always on the common normal that Zi-1 makes with Zi. Fig. 6
displays the coordinate frame chain, rotation directions and
angles of robot rotation.

Using D-H parameters, the relation between Rodi-1 and
Rodi can be described with four homogeneous
transformations. Knowing these homogeneous
transformations, the transformation matrix can be calculated
as

),()0,0,(),0,0(),(iiii xRotaTransdTranszRotA ωθ=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
−

−

=

1000
0 iii

iiiiii

iiiiiii

dCS
iSaSCCCS

CaSSCSC

ωω
θωθωθθ
θωθωθθ

 (1)

where Ai is the transformation matrix representing
transformation from coordinate i-1 to coordinate i.

Rot(z, iθ), Trans(0,0,d), Trans(ai,0,0), Rot(x, iω) are the
four homogeneous transformations by which we transform
coordinate i-1 to coordinate i. Rot(z, iθ) means rotation

around Z axis by iθ angle. Trans(ai,0,0) means translation
from original point to a new point with increment ai in X
direction, 0 in Y and Z directions. ai is the length of the
common perpendicular and di is the algebraic distance along
axis Zi-1 to the point where the common perpendicular to axis
Zi is located. iθ is the torsion angle, about axis Zi-1, that the
common perpendicular Xi makes with Xi-1. iω is the projected
angle, about Xi, that axis Zi makes with axis Zi-1.

Knowing the transformation from coordinate i-1 to
coordinate i, the transformation matrix from coordinate i to
coordinate n is derived through continued product from Ai
to An:

niin
i AAAT L1

1
+

− = (2)

Where n
i T1− is the transformation from coordinate n to

coordinate i-1.
In this way, the position of each joint in robot structure is

described. The location of mobile robot is determined by
transformation from the coordinates of the robot base frame
and the Cartesian coordinates of the environment. Thus the
system constructed the robot body and realized the robot
moving and motion simulation. A viewing class of objects
was defined to provide functions for matrix transformations,
in order to support changes in the viewing angle and shape
transformation.

C. Multi-Robot Simulation Mechanism
Java multi-threads are used to realize the multi-robot

simulation. Two threads are set up as a manipulating thread
and a detecting thread. In order to improve the real time
performance of system, a data pool is created in client to store
the current local environment and robots’ information. So the
robot client need not always invoke the whole Omni database
information in the server side, but just call the local
environment data from his own data pool. The two above
threads access the data pool alternately. There’s a producer
and consumer relationship between them.

As presented in fig. 7, the manipulate thread calls the
control agent to get the current robot information, updates

Fig. 6 Coordinate Chain on Robot Rods

Fig. 7 Multi-robot Simulation Mechanism

FrCT2.2

453

Authorized licensed use limited to: Shanghai Jiao Tong University. Downloaded on April 24, 2009 at 09:36 from IEEE Xplore. Restrictions apply.

data in data pool. The data pool also exchange data with the
omni database. For more efficiency, if a robot is positioned at
a certain floor, in the client’s data pool. Only the data of
robots and objects on that specific floor is loaded. The detect
thread checks the data pool constantly and, as soon as there is
a change in the data pool, the robot is rebuilt in 3D simulator
and monitor agent. This mechanism is implemented for all the
robots in a multi-robot system.

V. EXPERIMENTS AND RESULTS
There are performed experiments in order to compare the

system load between the centralized system [6] and the

distributed system which is used for controlling real robot or
simulation one.

First, the centralized system is used to perform multiple
robot simulation. The computer that is used has a Celeron (R)
CPU 2.40GHz and 1230M usable memory (512M physical
memory and 718M virtual memory). The operating system is
Microsoft Windows XP Professional with Service Pack 2. Fig.
8 presents utilization rate of the CPU (fig. 8(a)) and the
memory (fig. 8(b)) in the centralized system. The utilization
rate of both resources increases linearly with the number of
robots in the simulation increasing. The experiment in which
four or more robots were considered failed for lacking
memory.

Fig.10 Response time in distributed system communication: (a) Instantaneous response time; (b) Average response time

Fig. 9 Distributed system load: (a) Server computer CPU utilization; (b) Server computer memory utilization

Fig. 8 Centralized system load: (a) CPU utilization; (b) Memory utilization

FrCT2.2

454

Authorized licensed use limited to: Shanghai Jiao Tong University. Downloaded on April 24, 2009 at 09:36 from IEEE Xplore. Restrictions apply.

In the distributed system, the MapEditor server and the
simulation server are installed on a server computer that
provides the services for multiple clients. Five robot clients
are installed on other five separate computers. All the
computers have the same hardware and software structure as
the computer used for the centralized system tests. The
computers were interconnected via a fast Ethernet (10 Base T)
for control-communication. Fig. 9 presents the rate of the
CPU and memory utilization with the increase of the number
of connected clients. Both the CPU usage and memory usage
of the distributed systems are increasing slower than in the
case of the centralized system. In the case that three clients
connect to the server computer, for a three robot simulation,
fig. 9(b) shows that the server computer only spends 63 MB
of memory, and the CPU average utilization is 26.57% (fig.
9(a)). The maximum CPU usage is 43.9% which is smaller
than in the case of the centralized system.

The advantage brought by the distributed system consists
in less CPU and memory usage. However, its shortcoming is
that the clients need longer response time between the start of
a method invocation and the arrival of the returned data [7].
The fig. 10(a) presents the instantaneous response time
recorded over 20 seconds of simulation. The average
response time value increases with the number of robots in
the simulation increasing, as shown in fig. 10(b). In the case
that five clients call the service from the server, the maximum
of instantaneous response time is less than 100ms value that
meets the requirements of a mobile robot simulation.

VI. CONCLUSIONS
In this paper, a CORBA-based distributed programming

system is proposed to realize multiple dual arm mobile robots’
control and simulation. Using the CORBA architecture, it’s
easy to install the servers and the multiple robot clients on
different computers. Each client processes computationally
expensive tasks such as calculating the related robot’s
key-value, rebuilding of the robot and its local environment
scene. Compared to our former centralized dual arm robot
system, the proposed distributed system results in less usage of
the system’s resources and improved real-time performances
satisfying the requirements of a complex multi mobile robots
simulation.

REFERENCES
[1] Brian P. Gerkey, Richard T. Vaughan, Andrew Howard, “The

Player/Stage Project: Tools for Multi-Robot and Distributed Sensor
Systems,” in Proceedings of the International Conference on Advanced
Robotics (ICAR 2003), pp. 317-323, Coimbra, Portugal, June 30 - July 3,
2003.

[2] Brian P. Gerkey, Richard T. Vaughan, Kasper Støy, Andrew Howard,
Gaurav S. Sukhatme, Maja J Mataric, “Most Valuable Player: A Robot
Device Server for Distributed Control,” in Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS
2001), pp. 1226-1231, Wailea, Hawaii, 29 October – 3 November,
2001.

[3] Klein, Jon., “BREVE: A 3D environment for the simulation of
decentralized systems and artificial life,” in Proceedings of Artificial
Life VIII, 8th International Conference on the Simulation and Synthesis
of Living Systems. pp. 329-334. MIT Press, 2002.

[4] Montemerlo M., Roy N., and Thrun S., “Perspectives on
standardization in mobile robot programming: The carnegie mellon
navigation (CARMEN) toolkit,” in Proc. IEEE/RSJ Int. Conf.
Intelligent Robots and Systems, pp. 2436-2441, 2003.

[5] Cote, C., Brosseau, Y., Létourneau, D., Raïevsky, C., Michaud, F.,
"Robotic Software Integration Using MARIE", International Journal
of Advanced Robotic Systems - Special Issue on Software Development
and Integration in Robotics, vol.3, No.1, pp. 55-60, 2006

[6] Qiu Chang-wu, CAO Qi-xin, IKUO Nagamatsu, KAZUHIKO
Yokoyama, “Graphical Programming and 3D Simulation Environment
for Robot,” Robot, vol. 27, No. 5, pp. 436-440. Sept. 2005.

[7] Object Management Group. White paper on Benchmarking, Version
1.0, OMG document bench/99-12-01, 1999.

[8] M. Henning, S. Vinoski, “Advanced CORBA Programming with C++,”
Addison Wesley, Reading MA. 1999.

[9] Object Management Group. OMG Robotics Domain Special Interesting
Group (DSIG) Homepage. Available: http://robotics.omg.org.

[10] Sun Microsystems Inc. Java IDL and RMI-IIOP Tools. Available:
http://java.sun.com/j2se/1.5.0/docs/tooldocs/index.html#idl, 2004.

[11] R&D Center YASKAWA Corporation. Instructions for RTLab
API(Ver 1.1.2). Yaskawa Robotics Technology R&D Dept, 2004.

FrCT2.2

455

Authorized licensed use limited to: Shanghai Jiao Tong University. Downloaded on April 24, 2009 at 09:36 from IEEE Xplore. Restrictions apply.

