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Abstract. 3D Mapping using RBG-D sensor is a hot topic in the robotic field.
This paper proposes a sub-map stitching method to build map in the large scale
indoor environment. We design a special landmark, and place it in the environ‐
ment. Every sub-map contains those landmarks, and then can be stitched by BA
optimization. The result shows that the map error is blow 1 % in a room with the
dimensions of 13 m × 8 m.
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1 Introduction

There are many ways to build a 3D model of the indoor environment using RGB-D
sensor, such as RGBDSLAM [1, 2] SLAM6D from 3Dtk [3] or KinectFusion [4]. Kine‐
ctFusion has the highest accuracy and real-time performance of those methods.
RGBDSLAM usually runs at 2 FPS and will become slower when more data is captured,
while SLAM6D is an offline method. To build a hole-less map, we have to capture many
views and also need the real-time feedback of the current model, so the real-time
performance is very important. The KinectFusion method runs at 15 fps, so we can
building the map by just handing Kinect and scanning all the environment with a real-
time feedback. However, the biggest disadvantage of KinectFusion is that, it can only
build limited size of map, because this method is memory consuming and especially
because it uses a GPU memory. Although simply reducing the resolution of the map can
enlarge the mapping area, this will decrease accuracy and make the mapping process
unstable. To resolved this limitation, paper [5, 6] propose a GPU-Octree data structure
to replace the 3-dims array of the Truncated Signed Distance Function (TSDF) model
[7], so it can reduce the demands of GPU memory and keep the accuracy. Paper [8]
proposal the Kinectous algorithm, which use the GPU as a ring buffer so can recycle
use the GPU. However, those methods all finish the mapping process in one try. And
also requires a lot of time to complete the entire map creation process, so reduce the
flexibility of the map created in the indoor complex cases difficult to practice.

In this paper, we resolved this problem by a sub-map stitching method. Since the
KinectFusion algorithm suit to create the small scale map, so we just use the
KinectFusion algorithm to build a sub-map with dimensions of 6 × 3 × 3 m, and the
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sub-maps were then stitched into a large map. To help the stitching process, a kind of
special landmark will be proposed, which is easy to be detected and localized in the sub-
map. The experiment result shows good precision.

2 Procedure of Mapping

2.1 The Main Idea and the Landmark

Since the KinectFusion algorithm will produces a point cloud style sub-map, so the
stitching target is the point cloud. The traditional point cloud stitching or alignment
problem is solved by ICP [9] method, which is not suitable for this mapping case for
three reasons:

1. The traditional ICP method need a good initial for converging. But in the mapping
process, the RGB-D sensor is holding by human, so there is no odometer information,
then a good initial position cannot be provided for ICP; and

2. The general ICP method is a 3D matching method, but notice that a consistent ground
plane is especially important in the indoor environment; and

3. The ICP need the overlap between the two point clouds, and more overlap the more
coverage the more precision. However, in the mapping case, more overlap between
the sup-maps means more number of sub-map, and will cost more mapping time.

Therefore, we proposed a ground plane consistent sub-map stitching using 3D land‐
mark. As shown in Fig. 1, the 3D landmark is made with balls because the spherical
shape is easy to be detected in the point cloud and a small plane for computing the
localization data. The landmarks are distinguishable by radius and height.

 

Localization Part 

Detection Part 

Supporting Part 

Fig. 1. Four ball landmarks

2.2 Layout of the Landmarks

Before the mapping process, every sub-map will be placed with four ball landmarks and
every two sub-maps have two corresponding ball landmarks, as shown in Fig. 2. For
least overlap between sub-maps, the landmark is place near the edge of the sub-map.
And to make the recognition of the corresponding relationship easy, beside the
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landmark’s identification, the distance between two landmarks is also used to determine
the correspondence of two sub-maps. For example, in sub-map1 and sub-map2, the
distance between landmark1 and landmark2 should be distinctive, so landmark3 and
landmark4 are the corresponding landmarks.

Fig. 2. Illustration of the alignment of the landmarks

2.3 Sub-map Building Using Advanced KinectFusion Algorithm

As mentioned before, the original KinectFusion method is not very stable, especially in
some simple environment. So we use an advanced KinectFusion algorithm proposed in
our previous work [10]. This advanced KinetFusion has two improvements of
KinectFusion algorithm. On one hand, the edge feature points in the environment are
matched to improve the robustness, on the other hand, a ground plane point cloud in the
model is preset to improve the accuracy. The improved algorithm decreases the
modeling error from 4.5 % to 1.5 % in a room of 6 m ×3 m ×3 m. Although the efficiency
is influenced, the running speed of the algorithm is still very high, and the user experience
during modeling is good.

An example of sub-map is shown in Fig. 3.

Fig. 3. An example of a sub-map
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2.4 Ground Plane Extraction

The ground plane is extracted using the Random sample consensus (RANSAC) method
[11], which is an iterative method to estimate parameters of a mathematical model from
a set of observed data which contains outliers, and the threshold value is set as 2 cm. A
temporary ground plane coordinate system is defined and the sub-map is transformed
to the ground coordinate system. Although the ground plane coordinates of the sub-maps
are not yet consistent, by doing this the dimension of the sub-map stitching problem is
decreased to 2D. The transformation results are shown in Fig. 4, in which the x-y plane
is coincident with the ground plane.

Fig. 4. The result of ground plane extraction and point cloud transformation

2.5 Ball Landmark Extraction and Corresponding Computation

Extracting the balls from the sub-map also uses the RANSAC method, but directly
running the RANSAC for the sub-map will fail because the ball is small compared to
the sub-map, meaning that the number of outliers is far larger than the inliers. Therefore,
the ground plane is first extracted and deleted from the sub-map and the Euclidean cluster
method is then used to detect those point clusters having a similar size to the ball;

Fig. 5. The result of ball extraction
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RANSAC is then run to find balls in every cluster. The result is shown in Fig. 5. After
ball extraction, determining the correspondences by ball radius and height and ball-ball
distance is straightforward.

2.6 Computation of the Pairwise Transformation

In this step, we intend to compute the transformation between two adjacent sub-maps.
There are two correspondence points (the ball centers) and a 2D transformation must
be computed. The general computation method for an optimized transformation from
two sets of corresponding points is reviewed by [12]. In our case, only two corre‐
sponding points are used to compute a 2D transformation, so a simpler way of solving
the problem was found. First, the ball points were projected to the x-y plane as in
Fig. 6(b) (where c1 and c2 are the centers of the points), then the optimized transfor‐
mation is the one that makes the two centers coincide and the four points lie in one
line (as shown in Fig. 6(c)). This result concerns with the result of the SVD based
transform optimized method [13].

Fig. 6. (a) Illustration of the original problem (b) Projection to the x-y plane decreases the
problem to 2D (c) The optimized 2D transformation

2.7 Loop Closure and BA Optimization

When building the sub-maps, the end map and the first map must be connected, giving
a loop closure. Based on a good initial value from the pairwise transformation result, a
BA algorithm [14] is used to optimize the transformation between those sub-maps.

The origin BA algorithm assume there are n 3D points projected into m pictures, let
 to be the projection of point i in the image j,  to be a binary variable,  if point

i can be seen in image j, otherwise . And let  to the camera internal and external
parameters, let  represent the 3D point i in the world. BA algorithm minims the projec‐
tion error and compute the optimal coordinate of those 3D points and also the transfor‐
mations between those cameras.

(1)

In which the Q is the prediction of the projection of the point i in image j, and 
represent the Euclidean distance between two 2D points in the image.
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Here, in our case, the  is the real 2D coordinates on the ground of the ith land‐
mark( ), and  is jth sub-map’s 2d pose information include the rotation angle Theta
and the transformation component T,  can determined by the neighborhood relation‐
ship,  represent the coordinates of landmark i respect to the sub-map j.

(a) 

(b) 

(c) 

(d) 

Last sub-map

First sub-map

Fig. 7. (a) sub-map stitching before BA optimize (b) balls map after BA optimize (c) Final map
after BA optimize (d) Final map without the landmarks
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The Fig. 7(a) show the error of initial stitching result using the result of the previous
section, show as Fig. 7(b), after the optimization, the ball landmarks in each sub-map
are in good agreement. Figure 7(c) and (d) show the final map with and without the
landmarks.

3 Experiment

This experiment mainly test the accuracy of the map built by our method. The test lab
environment is show as Fig. 8(a), in which several test points were selected shown as
the red points and the distance between each other were measured manually. The built
3D map is shown in Fig. 8(b), we import the map into a tool software named Meshlab
and also measured the corresponding distance. Then the two types of measured distances
are compared with each other, and the result is shown in Table 1. The dAB and dBC show
the accuracy inside a sub-map, and the others show the accuracy of the sub-map stitching
method. The result shows that map error is 1 % in the room with dimensions of
13 m × 8 m.

(a)

(b)

A D
E

robot

KinectB
E

Fig. 8. (a) The test scene (b) Some points used for distance comparison
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Table 1. Distance comparison result

Real distance (cm) Map distance (cm) Absolute error (cm)
dAB 136.5 137 0.5
dBC 278 279.2 1.2
dDE 400.252 394.049 6.20283
dDF 811.758 812.607 0.8493
dDG 822.771 816.12 6.65138
dEF 1089.81 1080.58 9.22867
dEG 1193.04 1181.14 11.9036

4 Conclusion

In this paper, a sub-map stitching based mapping method for building a large scale 3D
indoor environment model was presented, with emphasis on the consistency of the
ground plane. And by using landmark, the overlap between the sub-maps can be reduced,
so make the mapping process The experimental results show that the accuracy the final
3D map is less than 1 % that in a room with dimensions of 13 m × 8 m.
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