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SUMMARY
This paper presents a quadratic programming (QP) form
algorithm to realize on-line planning of mobile manipulators
with consideration for improving the stability level. With Lie
group and screw tools, the general tree topology structure
mobile robot dynamics and dynamic stability attributes were
analysed. The stable support condition for a mobile robot
is constructed not only in a polygonal support region, but
also in a polyhedral support region. For a planar supporting
region, the tip-over avoiding requirement is formulated as
the tip-over prevent constraints with the reciprocal products
of the resultant support wrench and the imaginary tip-over
twists, which are constructed with the boundaries of the
convex support polygon. At velocity level, the optimized
resolution algorithm with standard QP form is designed
to resolve the inverse redundant kinematics of the Omni-
directional Mobile ManipulatorS (OMMS) with stability
considerations. Numerical simulation results show that the
presented methods successfully improve the stability level of
the robot within an on-line planning process.

KEYWORDS: Mobile manipulator; Stability; Tip-over
avoiding; On-line planning; Inverse redundant kinematics.

1. Introduction
The dual-arm mobile robot has an advantage to be an
assistant or to take the place of humans to work in an
environment with the interface for a human being. The
mobility endows the robot great versatility and flexibility.
However, the mobile robot is a structurally unstable system;
it has a possibility of overturning under the dynamic wrench
action caused by inertial or outside forces arising from
manipulation or disturbance. It is particularly prone to tip-
over for robots with small-sized mobile platforms, which is
a necessary condition for applications in homes, offices or
workshops. Keeping support stability is an important premise
to finish manipulation tasks for mobile robots. On the other
hand, the working environment is commonly an unstructured
environment. Therefore, on-line tip-over avoidance ability
must be considered in a mobile manipulator’s control system
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design. In this paper, we focus on the study of the dynamic
stability and the on-line planning method with improving
stability considerations for a service robot with an Omni-
directional Mobile ManipulatorS (OMMS) configuration.

Some profound comparative analysis and new stability
measures for static or dynamic stability have been presented
and proposed in previous works.1–4 Rey and Papadopoulos5

have proposed the force-angle measure for the tip-over
stability prediction and prevention algorithm for a mobile
manipulator. Abo-Shanab and Sepehri6 took a Caterpillar
215B excavator-based log-loader as the prototype; they
modelled and simulated the dynamic stability behaviour
during aback-and-forth motion of the base. Huang et al.7
have proposed a stability control method based on the
simplified ZMP (zero moment point) criterion, which
neglects the mass moment of rigid bodies. They separated
the system into vehicle and manipulator parts and utilized
only the manipulator motion to compensate the system
stability. However, the strong dynamic interaction makes the
combined scheme better than the separated one.8 Furuno
et al.9 formulated the distance from the simplified ZMP to
the boundary of the stable support region to be a nonlinear
inequality constraint and then combined the constraints to
be an optimal control problem. The hierarchical gradient
method was used to solve the problem. However, the
method is weak in treating a dynamic environment and
has less efficiency. Li and Liu10 presented a new on-line
overturn prevention algorithm to optimize the supporting
force distribution on wheels by controlling self-motions
of the on-board redundant mobile manipulator. Wieber11

presented a profound analysis about the dynamic stability
of the walking system and proposed a new stability margin
definition with the Lyapunov sense.

Mobile platform endows the manipulator(s) system extra
degrees of freedom, which largely extend the workspace and
the ability of the robot to work in dynamic environment.
Most of the research works modelled the kinematics and
dynamics of the manipulator(s) in global coordinates,1–10

which require updating accurate position/pose information
of the system in microseconds. In unstructured environments
and field applications, global position/pose information
needs extra sensor devices; moreover, that is arduous and
mistakable to detect with respect to the precision and real-
time demands. However, replacing the reference inertial
frame with a local one and determining the attitude of the
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system with proprioceptive sensors is a convenient way for
task fulfillment. For example, we unconsciously locate the
cup relative to the table but not to the frame of the door
when we try to fetch the cup on the table. In this paper, we
will implement the dynamics and stability analysis with left
invariant form to make the formulation of the kinematics and
dynamics of the system self-reliant. In Sections 2 and 3, we
will show that it is enough to treat the stability and dynamics
of the system with the proprioceptive attitude information
and the configuration information of the body-fixed frame to
an arbitrary inertial frame.

When a mobile robot is moving on a given terrain, the
system states space can be split into two subspaces: one
can fulfill the system motion without tip-over, and the other
cannot avoid tip-over to fulfill the system motion.11 The two
subspaces of the system states space can be formulated as
inequality constraints for the system states. In this paper,
the tip-over prevent constraints (TPC) and joint motion
constraints (JMC), which are constructed from joint range,
velocity and acceleration limits, are formulated as unified
linear inequality constraints at velocity level. The task
equality constraints, TPC and JMC are incorporated into
standard quadratic programming (QP) method to resolve the
on-line planning of a dual-arm mobile robot with dynamic
stability consideration.

This paper is organized as follows. Section 2 presents
the OMMS robot system description and the general
dynamics modelling method for the tree topology mobile
robot. Section 3 presents the generalized stable support
condition for mobile robot, the new stability optimization
criteria and the TPC. In Section 4, we incorporate the task
equality constraints, JMC and TPC into the standard QP
algorithm to realize on-line path planning with consideration
for improving the stability level. In Section 5, simulation
results of the proposed method are presented to exhibit
the effectiveness of the proposed method. Conclusions are
summarized in Section 6.

2. System Dynamics

2.1. OMMS system description
The prototype of the OMMS system is shown in Fig. 1.
The coordinate frames configuration of the OMMS system
is shown in Fig. 2. The system consists of three subsystems:
one omni-directional mobile platform and two individual 7-
DOF spatial manipulators. In Fig. 2, the mobile platform is
depicted as a trunk rigidly mounted on a triangular plate and
is connected with revolute joints to three independent driving
Mekanum wheels, which are symmetrically configured and
consist of a number of free-spinning castor wheels positioned
on the periphery of the wheel circumference and allowed
for near-friction-free movement parallel to the Mekanum
wheel’s axes of rotation. The omni-directional mobile
platform endows the robot with the holonomic mobility
on plane. The label in Fig. 1 shows the prototype of the
Mekanum wheel in this work. We denote the wheel, the
trunk and the left and right manipulators with subscripts ‘w’,
‘c’, ‘l’ and ‘r’, respectively.

Fig. 1. The omni-directional dual arm service robot prototype.

Fig. 2. Coordinate frames for the OMMS system.

Most mobile robots are tree topology structure systems and
hence have superior dexterity and adaptability. The presented
prototype is of a tree topology structure mechanism also.
We describe the motion of the robot bodies using the twist
and product-of-exponential (POE) formula. The initial twist
parameter of the joints is calculated with respect to the
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body-fixed coordinate frame C(Oc − XcYcZc) located on the
trunk, which is the root body of the tree structure multi-body
system. In view of the wide space mobility of the mobile
robot, we adopt the left invariant body screw coordinates to
model the system with self-reliant style. (In fact, the screw
motion is expressed in an instantaneous imaginary inertia
frame that superposes with the body-fixed frame. In this
work, we obey the notation habits12 and name this image
frame as body-fixed coordinate frame.)

2.2. Dynamics of the system
In this section, the OMMS system dynamics is modelled with
geometry view and better schematic based on the theory of
Lie groups and screw. Geometry background for the rigid
body motion and force wrench is not expatiated repeatedly
for the length consideration. (Refer to the works of Murray
et al.12 and Park et al.13 for detailed background information.)

We take the tree topology as the general structure to model
the OMMS system dynamics and do not refer to the other
mobile robot type. Choosing arbitrarily a body-fixed frame
j Bifor the body i of the branch j , the configuration, velocity
and acceleration of the body are

gji = gwce
ξ̂j1qj1 · · · eξ̂jiqjigc,ji(0), (1)

Vji = (
g−1

ji ġji
)∨ = Adg−1

c,ji
Vc + Jjiq̇j , (2)

V̇ji = Adg−1
c,ji(0)(

jTi1Vc)′ + Jjiq̈j + J̇jiq̇j , (3)

where gwc ∈ SE(3) is the configuration of the frame C respect
to the chosen inertial reference frame W , gc,ji(0) ∈ SE(3) is
the initial configuration of the j -th branch’s i-th body-fixed
frame j Bi respect to the frame C, and gc,ji = g−1

wc gji is the
current configuration of the j -th branch’s i-th body-fixed
frame respect to the frame C · ξji = [−wji × pji, wji]T ∈R6

is the twist of the i-th joint axis of thej -th branch respect to
the frame C, where wji is the unit vector in the direction of
the joint axis and pji is an arbitrary point on the axis of the
joint i · Vc = (g−1

wc ġwc)∨ ∈ R6 is the body twist of the frame C.
In view of the attributes of the left invariant presentation, Vc

will not change when the inertial reference coordinate frame
is altered. qj = [qj1, . . . , qjm]T ∈ Rm is the joint variable of
the branch j · Jji is the body Jacobian matrix of the i-th body
in j -th branch and has the form

Jji = Adg−1
c,ji(0)[

jT1iξj1, . . . ,
jTiiξji, 0, . . . , 0] ∈ R6×m, (4)

where Adg ∈ R6×6 is the adjoint transformation associated
with g. The matrix jTik ∈ R6×6 has the form

jTki = ⎧⎨
⎩

Ad
(e

�
ξ kqk eξ̂k+1qk+1 ···eξ̂i qi )−1

i > k,

I6 i = k,

0 i < k.

(5)

The differential form of the adjoint transformation of a twist
V ∈R6 is

(TijV )′ = TijV̇ + j∑
k=i+1

Tkj[Ti,k−1V, ξ
k
]q̇

k= TijV̇ + j∑
k=i+1

TkjadTi,k−1V ξkq̇lk , (6)

where adξ1ξ2 is the adjoint representation of the Lie bracket
[ξ1, ξ2].

For a rigid body with twist in the body-fixed frame, the
Newton–Euler equation has the form12

MV̇ − adT
V MV = F, (7)

where M ∈ R6×6 is the generalized inertial matrix of the
rigid body, V ∈ R6×1 is the body twist of the rigid body and
F ∈ R6×1 is the external wrench applied on the rigid body
and consists of gravitational force and external force. All
these terms are expressed with respect to a same body-fixed
frame.

Based on the d’Alembert principle, we define the inertial
wrench as F I =MV̇ − adT

V MV . Combining the property
that the reciprocal product of twist and wrench gives the
instantaneous power, and Jourdain’s variation principle, we
can get the equation

(F − F I ) · δV = 0. (8)

Extending the above equation to multi-rigid body systems,

n∑
i=1

(
Fi + Ri − F I

i

) · δVi = n∑
i=1

Ri · δVi = 0, (9)

where Fi is the generalized external wrench (including active
driving force/torque, gravity force and external wrenches
acted on by environment) applied on body i, Ri is the
ideal constraint wrench applied on body i and F I

i is
the inertial wrench of body i (each term is expressed
with respect to the i-th body-fixed coordinate frame).
For further simplification, we decompose the generalized
external wrench Fi into active driving wrench FA

i , dissipation
wrench F

ϕ

i and the external wrench FE
i . Equation (9) can be

rewritten as

n∑
i=1

(
FA

i + FE
i + F

ϕ

i − F I
i

) · δVi = 0. (10)

Assuming that the joint velocity is q̇ = [q̇1, q̇2, . . . , q̇n]T∈ Rn×1 and all joints are actively driven, the driving
torque/force is τi and the dissipation torque/force is ϕi , the
system dynamics equation of the OMMS system can be
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written as

n∑
i=1

(
τi · δq̇i + ϕi · δq̇i + FE

i · δVi − F I
i · δVi

)+ FE
c · δVc − F I

c · δVc = 0. (11)

According to Eq. (11) and considering the independent
property of the variation of the generalized coordinates, the
OMMS system dynamics can be modelled as a canonical
form,

J T (F I − FE) = τ + ϕ, (12)

where F I = [(F I
c )T , (F I

w)T , (F I
l )T , (F I

r )T ]T , FE = [(FE
c )T ,

(FE
w )T , (FE

l )T , (FE
r )T ]T ,

J = ⎡
⎢⎢⎢⎣

I6 0
Aw Jw

Al 0 Jl

Ar 0 0 Jr

⎤
⎥⎥⎥⎦ ∈ R108×23,

Aw = ⎡
⎢⎣

Adg−1
c,w1

Adg−1
c,w2

Adg−1
c,w3

⎤
⎥⎦ ∈ R18×6,

Al = ⎡
⎢⎢⎣

Adg−1
c,l1

...
Adg−1

c,l7

⎤
⎥⎥⎦ ∈ R42×6,

Al = ⎡
⎢⎢⎣

Adg−1
c,r1

...
Adg−1

c,r7

⎤
⎥⎥⎦ ∈ R42×6,

Jw = ⎡
⎢⎣

Adg−1
c,w1(0)ξw1 0

Adg−1
c,w2(0)ξw2

0 Adg−1
c,w3(0)ξw3

⎤
⎥⎦ ∈ R18×3,

Jl = ⎡
⎢⎢⎢⎢⎣

Jl1

Jl2

...
Jl7

⎤
⎥⎥⎥⎥⎦ ∈ R42×7, Jr = ⎡

⎢⎢⎢⎢⎣
Jr1

Jr2

...
Jr7

⎤
⎥⎥⎥⎥⎦ ∈ R42×7,

τ = ⎡
⎢⎢⎢⎣

0
τw

τl

τr

⎤
⎥⎥⎥⎦ ∈ R23×1, ϕ = ⎡

⎢⎢⎢⎣
0
ϕw

ϕl

ϕr

⎤
⎥⎥⎥⎦ ∈ R23×1.

Note that Eq. (11) gives the general OMMS system
dynamics model. For the first six equations, there are no

actuation forces. The trunk’s motion realization must depend
on appropriate actuation of each joint and contact forces
transformed from wheels. However, if the robot moves on a
plane, and there is no tip-over and slippage between wheels
and the floor, the system dynamics model will not include
the independent part for the trunk, and there exists a relation
Vc =P q̇w, where qw ∈ R3 is the wheel rotation angle and
P ∈ R6×3 is constant and decided by structure parameters.

In Eq. (11), the term FE includes the gravity forces FGand
contact forces FC arising from contact with environment.
Assuming that there have been contact forces only in the
wheel and floor touching area, we neglect the dissipation
force action and substitute the inertial wrench into (12); the
system dynamics has the form

[
M1

M2

][
V̇c

q̈

] + [
C1

C2

][
Vc

q̇

] + [
Gc

Gq

]= [
0
T

] + [
AT

wFC
w

FE
q

]
, (13)

where q = [qT
w, qT

l , qT
r ]T ∈ R17×1 is the joint variable vector

of the OMMS system, T = [τT
w , τ T

l , τ T
r ] ∈R17×1 is the

actuation torque vector of the OMMS system and Gc ∈ R6×1

and Gq ∈ R17×1 are the system gravity force actions for the
trunk and the other links respectively. FC

w ∈ R18×1 is the
contact wrench vector acted on wheel by floor and descript
in the wheel body-fixed frame. FE

q = [J T
w FC

w , 0, 0] ∈ R17×1

is the contact force action in joint space. Other details are
omitted for length consideration.

Assuming the wheel floor contact is of the point contact
type. The local contact frame is shown in Fig. 3(a). In
each contact point, there exist contact forces f

i
= [f i

x , f i
y ,

f i
z ]T , i = 1, 2, 3, f i

z , and [f i
x , f i

y ]T are the normal and
tangential components of the contact forces respectively.
According to Coulomb’s law and considering the unilateral
constraints, there exist inequality constraints as⎧⎨

⎩
fz ≥ 0

μfz ≥ √
f 2

x + f 2
y

. (14)

Let Bi ∈ R6×3 be the transformation matrix to transform
the contact forces from the contact frames to the wheel body-
fixed frame. We can obtain FC

w as

FC
w = ⎡

⎢⎣
B1f1

B2f2

B3f3

⎤
⎥⎦ . (15)

Combining (13), (14) and (15), we can get the realizable
system motion dynamics equation. Analysing the above
equations, we can find the necessary condition for a mobile
robot to realize a given movement as there exist contact
forces satisfying (14) when the actuation forces are applied to
the dynamics system modelled with (13). However, keeping
support stable is another important necessary condition to
realize desirable motion or manipulation for a mobile robot.
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Fig. 3. The contact force is expressed as three components in (a), the contact force vector is limited within the Coulomb’s friction cone as
shown in (b).

In the following section, the dynamic stable support condition
for a mobile robot will be analysed.

3. Dynamic Stability Constraints
Section 2 has presented the general dynamic model method
with Lie group tools for the tree topology structure of
a mobile robot. The necessary condition for realizable
movement of the robot is summarized in Eqs. (13) and
(14). We found that the movement of the robot strongly
relies on the available contact forces and the appropriate
driving forces. Based on this observation, the stability of
the mobile robot can be defined as to keep contact status
unchanged and to provide the support for the movement and
pose transformation of the robot system with appropriate
driving forces. Keeping contact status unchanged has two
aspects: one is for avoiding tip-over, the other is for avoiding
slippage.

In this work, stable support is defined as that in which
the relative acceleration in the tangential direction of the
contacting surface between the mobile robot and the ground
is zero. The situation for tip-over or accelerated sliding
motion between the mobile robot and the supporting ground
is defined as unstable support. In applications, a tip-over is
more dangerous than a slippage. Avoiding slippage requires
more effort to have the robot system comply with the
environment than does avoiding tip-over; it needs detailed
information on the attributes of the local terrain contacted
with the robot. In this section, we will focus only on the
tip-over avoiding principle.

3.1. Generalized condition for stable support
At any instantaneous time, there exists wrench equilibrium
equation in the arbitrarily chosen body-fixed frame for the
inertial wrench and the external wrench acted on the mobile
robot system. The external wrench includes the gravity forces
and the contact forces acted on the mobile robot system by
environment. The equilibrium equation has the form

F I − FG − FM = FS, (16)

where F I ∈ R6, FG ∈R6, F tS ∈ R6 and FM ∈ R6 are the
resultant inertial wrench (RIW), the resultant gravity wrench
(RGW), the resultant supporting wrench (RSW) and the
resultant reaction manipulation wrench (RRMW) for the
robot system respectively. Here, the contact wrenches acted

on the robot by environment are differentiated as RSW and
RRMW according to whether the contact wrenches are for
supporting action. In this work, we define the left part of
(16) as the dynamic load wrench of the mobile robot, the
definition of which is as follows:

For a mobile robot, the sum of the resultant inertial wrench,
negative resultant gravity wrench and negative resultant
reaction manipulation wrench except contact wrenches for
supporting action is called the dynamic load wrench of the
mobile robot system.

Assuming Eq. (16) is set up in frame C fixed on the root
body of the tree topology structure system, the RIW, RGW
and RRMW have the forms

F I = F I
C + ∑

i,j

AdT

g−1
c,j i

F I
ji , (17)

FG = FG
C + ∑

i,j

AdT

g−1
c,j i

FG
ji , (18)

FM = FM
C + ∑

i,j

AdT

g−1
c,j i

FM
ji , (19)

where F I
C , FG

C and FM
C are the inertial, gravity and reaction

manipulation wrenches for the root body in C respectively;
F I

ji , FG
ji and FM

ji are the inertial, gravity and reaction
manipulation wrenches of j -th branch’s i-th body in frame
j Bi respectively; and gc,ji is the configuration of the j -th
branch’s i-th body-fixed frame j Bi respect to the frame C.

The RSW is passive and cannot be controlled directly. So
we can make the system avoid tip-over only by adjusting
RIW, RGW and RRMW. For a mobile robot, the effective
support region may be approximated with convex polygon
or convex polyhedron (shown in Fig. 4). For the planar
supporting situation, the well-known ZMP14-based tip-over
prevent criterion is often applied in avoiding tip-over of
the mobile robot.7,9,14–16 The assumption of the rigidity of
the flat ground, which can provide arbitrary normal contact
forces passively induced by the dynamic load wrench of
the mobile robot system, is the important premise for the
ZMP criterion. According to the ZMP criterion, the tip-
over possibility of the mobile robot can be judged by
whether the intersection point of the supporting plane and
the line of equivalent force corresponding to the dynamic
load wrench of the robot system is an inner point of the
convex support polygon. When the supporting region is not a
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Fig. 4. Different support regions for different robots: (a) The planar support polygon for a mobile robot walking on a plane terrain; (b) The
support polyhedron for quadruped robot walking on uneven terrain; (c) The support polyhedron for a biped robot stepping up the stairs.

planar one, the supporting stability condition is complicated.
The force-closure concept12 usually used in grasp stability
judgement for multi-fingered hands can be referred to set up
the definition for the stable supporting condition of a mobile
robot with arbitrary supporting region (including polygon
and polyhedron supporting region) as shown in Fig. 4. For
a planar support situation, if the induced constrained forces
arising from supporting points can resist any perturbation
torque which parallels the supporting plane, we say that the
support for the mobile robot is stable. Similar conclusion can
be deduced for a polyhedron supporting situation, where the
polyhedron is decomposed as polygons. We can summarize
the following proposition.

Stable support for a mobile robot: A mobile robot has
stable support if and only if the induced resultant supporting
wrench can resist any perturbation torque which causes a
tumbling action for the supporting polygon or polyhedron.

For the planar stable supporting situation, we can choose
the objective supporting plane (OSP) (where the support
polygon is laid on) as shown in Fig. 5. The equation
of the plane in the body-fixed frame C is expressed as
a(x − x0) + b(y − y0) + c(z − z0) = 0. p0 = [x0, y0, z0]T is
any point on the OSP. At the coordinate frame Z, where the
origin is the ZMP located on the OSP and its z-axis parallels
with the normal vector of the OSP, the transformed RSW can
be expressed as

F S
z = AdT

gCZ
F S, (20)

where gCZ = (p, R) ∈ SE(3) is the configuration of the frame
Z to the frame C, F S has the vector form [f T , τ T ]T ,
f = [f1, f2, f3]T ∈ R3 and τ = [τ1, τ2, τ3]T ∈ R3. The ZMP
balance condition requires that the wrench FZ has no moment
component along the OSP,14 and hence we can conclude that
the vector τ − �

pf is parallel with the normal vector of the
OSP. Combining the OSP equations, the ZMP on the OSP
can be resolved from

pZMP = {
a(x − x0) + b(y − y0) + c(z − z0) = 0

(τ − �

pf )//[a, b, c]T
. (21)

Here, we do not present the analytical form of (21)
considering that the equation group must be adjusted
according to the different component forms of the OSP’s

C

p1

p2

p3

p4

P5

Z

OSP

Conservative support
polygon

Actual support polygon

e1

e2 e3

e4

e5

τ

f

pZMP

Fig. 5. The relation of the Objective Support Plane (OSP), the Actual
Support Polygon (CSP) and the Conservative Support Polygon
(CSP).

normal vector. The configuration of the supporting region
with respect to the chosen body-fixed frame is deduced only
from the joint variables and the contact status information.
Therefore the presented method is self-reliant and more
realizable than that set up in a global coordinates frame.

In this work, we focus only on the situation in which the
OMMS system moves on a plane. In the OSP shown in Fig. 5,
the actual support polygon (ASP) is the section of the support
region superposed with the OSP. When the ZMP exists within
the domain of the ASP, the robot will keep its support balance
from tip-over. Let SASP represent the point set of the ASP.
The ZMP criterion can be expressed as

pZMP ∈ SASP. (22)

In literatures for biped locomotion,14,15 avoiding tip-
over is often realized with the path following the desired
ZMP trajectory. This method applies strong constraints to
the system dynamic motion except the task constraints.
The tradeoff between constraints, energy consumption
consideration and manipulation action will make the desired
ZMP path following fail easily.16 We can lose the balance
constraints by making the ZMP locate in a conservative
support region, represented with a conservative support
polygon (CSP) as shown in Fig. 5, instead of limiting the
ZMP to a desired path. In the next subsection, we will
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formulate this idea as a group of inequality constraints at
velocity level.

3.2. Tip-over prevent constraints
At any instantaneous time, the robot will not tip-over or
loose support when the ZMP is located in the ASP for a
planar stable support situation. If the ZMP is located on the
boundary of the ASP, the robot system will be prone to tip-
over under perturbations. For increasing the robustness and
the level of the support stability, we choose a subset of ASP,
shown as CSP in Fig. 5, as the feasible range for the ZMP.
As shown in Fig. 5, we construct an imaginary twist with the
point pi and the vector ei as ξi = [−(ei × pi)T , eT

i ]T in frame
C. Assuming the criterion pZMP ∈ SCSP is satisfied, it means
that the RSW, F S, will generate negative power as the robot
moves with the twist ξi . Therefore, we can construct TPCs
as

ξT
i F S ≤ 0. (23)

When the TPCs are satisfied, the dynamic power stability
margin can be defined as the smallest instantaneous
perturbation power to tumble the robot around one edge of
the CSP, that is,

Max
i

(F S · ξi). (24)

Then we can construct the optimization criterion to improve
the stability level as

Min(max
i

(F S · ξi)). (25)

The optimization criterion (25) is more effective than the
constraints (23) in improving the stability level for avoiding
tip-over. However, the above criterion cannot assure that the
TPC is not broken in the task execution process. So we must
apply the TPC to confine the system states out of the subspace
which will cause a tip-over motion of the system. How to
deal with the improving stability requirement and avoiding
tip-over simultaneously is our concern.

Because of the mobility of the platform and the redundant
manipulator design, the OMMS system is a redundant
system. The QP algorithm has been proved as an effective
way to resolve the redundancy problem.17 At velocity level,
we can transform the TPC to be inequality constraints of a
unified form with the JMC, which are constructed from joint
range, velocity and acceleration limits. Then, the TPC and
the JMC can be incorporated into standard QP algorithm to
resolve the redundancy problem. At acceleration level, the
TPC for the OMMS system has the following linear form:

ξT
i (F I − FG − FM ) ≤ 0. (26)

Considering the need to alleviate computation load, we can
transform the above constraints from the second-order level
to the first-order level of system states according to the
difference relation q̈(t − �t) = (q̇(t) − q̇(t − �t))/�t . The
TPC at velocity level has the form

jAT (q(t − �t))q̇(t) ≤ jBT (q(t − �t)), (27)

where q̇(t) = [V T
C (t), q̇T

l (t), q̇T
r (t)]T ∈ R20, jAT (q(t − �t))∈ R1×20 and jBT (q(t − �t)) ∈ R are set up for the j -th twist

ξj , which corresponds to the edge of the CSP. The details can
be found in the appendix.

For the simplest situation in which the robot moves with
no slippage on a plane, the trunk’s twist motion can be
conveniently realized with the driving wheels. The relation
between the wheel rotation velocity and the body twist of
the trunk can be deduced as Vc = P q̇w, where qw ∈ R3

is the wheel rotation angle and P ∈ R6×3 is constant and
decided by structure parameters. Therefore, the velocity of
the system states will be q̇(t) = [q̇T

w (t), q̇T
l (t), q̇T

r (t)]T ∈ R17.
When slippage cases occur, the trunk’s motion cannot be
controlled directly. In such situations, the trunk’s dynamic
wrench action can be treated as a part of jBT and the
velocity of the system states in (27) can be chosen as
q̇(t) = [q̇T

l (t), q̇T
r (t)]T ∈R14.

4. Optimized Planning
The OMMS system is a redundant DOF system. At velocity
level, the optimized solution under equality and inequality
constraints for the inverse redundant kinematics (IRK) can
be got with optimized solution as

Minimize H (q, q̇), (28)

Subject to J q̇ = ẋ, (29)

Aq̇ ≤ B, (30)

where H (q, q̇) ∈R is a performance function. Equation (29)
represents the relationship between the end-effector velocity
and the joint velocity. The function H (q, q̇) can be linear
or nonlinear in form. Because of the consistency attribute of
system dynamics, the quadratic form’s performance function
is preferred, such as H (q, q̇) = 1

2 q̇T Wq̇ + ϕq̇, where W (q) ∈
Rm×m is a positive definite cost matrix and ϕ(q) ∈ R1×m is
a linear cost vector. The natural choice of the performance
function for (28) is the minimized system kinetic energy. For
simplifying the algorithm realization, we choose the const
weighted matrix according to the mass distribution of the
manipulator.

The limits of the joints’ range, velocity and acceleration
must be considered in path planning. Let ql and qu denote
the lower and upper limits of the joints’ range, q̇l and q̇u
denote the lower and upper joints’ velocity limits and q̈l and
q̈u represent the lower and upper joints’ acceleration limits.
The available joints’ range, velocity and acceleration can be
converted to velocity constraints17 as follows:

�ql − q(t)
�t

≤ q̇(t) ≤ hqu − q(t)
�t

, (31)

βq̇l ≤ q̇(t) ≤ βq̇u, (32)

q̇(t − �t) + �t · γ q̈l ≤ q̇(t)≤ q̇(t − �t) + �t · γ q̈u, (33)

where � = diag[�1, . . . , �m], h = diag[h1, . . . , hm], β =
diag[β1, . . . , βm] and γ = diag[γ1, . . . , γm] (0 <�i ≤ 1,
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Table I. The parameters of the OMMS service robot.

Parameter Value (unit) Description

ml1, . . . , ml7 [2.7, 2.472, 2.376, 2.304, 1.536, 1.08, 0.768] (kg) The mass of the left arm links
mr1, . . . , mr7 [2.7, 2.472, 2.376, 2.304, 1.536, 1.08, 0.768] (kg) The mass of the right arm links
mw1,mw2,mw3,mt [1.6, 1.6, 1.6, 60] (kg) The mass of the wheels and the trunk
Il1, . . . , Il7 diag(0.019, 0.019, 0.0076), diag(0.0223, 0.0223, 0.01) The mass moment of inertia

for left and right arm links
(Ir1, . . . , Ir7) diag(0.0182, 0.0182, 0.0096), diag(0.0167, 0.0167, 0.0093)

diag(0.0082, 0.0082, 0.0062), diag(0.0023, 0.0023, 0.0044)
diag(0.0013, 0.0013, 0.0019) (kg × m2)

Iwi (i = 1, 2, 3), It diag(0.0017, 0.0017, 0.0031), diag(8.55, 8.55, 2.70)(kg × m2) The mass moment of inertia for wheel and trunk
Lql [−180; 0; −45; −150; −120; −75; −60] (degree) The low joint range limit of left arm
Lqh [30;120; 45; 0; 90;75;60] (degree) The high joint range limit of left arm
Lql [30; −120; −45; 0; −90; −75; −60] (degree) The low joint range limit of right arm
Lqh [180; 0; 45; 150; 120; 75; 60] (degree) The high joint range limit of right arm
Lq̇h(l) (Rq̇h(l)) ±[2;2;2;3;2.5;2.5;2.5] (grad/s) The joint velocity limit of left arm
Lq̈h(l) (Rq̈h(l)) ±[2;2;2;2.5;1;1;1] (grad/s2) The joint acceleration limit of left arm
q̇w ±8 (grad/s) The rotation velocity limit of wheel
q̈w ±5(grad/s2) The wheel rotation acceleration limit
ξl1, . . . , ξl7 [−0.495, 0, 0, 0, 1, 0]T , [0,−0.495, 0, 1, 0, 0]T , The initial twists of the left arm joint,

[0, 0, 0, 0, 0,−1]T , which is defined in the L coordinate frame
[−0.225, 0, 0.03, 0, 1, 0]T , [0, 0, 0, 0, 0,−1]T , The initial twists of the right arm joint,

[0, 0, 0, 1, 0, 0]T , [0, 0, 0, 0,−1, 0]T which is defined in the R coordinate frame
ξl1, . . . , ξl7 [0.495, 0, 0, 0,−1, 0]T , [0, 0.495, 0, 1, 0, 0]T ,

[0, 0, 0, 0, 0,−1]T , [0.225, 0,−0.03, 0,−1, 0]T ,
[0, 0, 0, 0, 0,−1]T , [0, 0, 0, 1, 0, 0]T , [0, 0, 0, 0, 1, 0]T

ξw1, ξw2, ξw3 [0, 0, 0, 1, 0, 0]T , [0, 0, 0,−0.5, 0.866, 0]T , The initial twists of the wheels’
[0, 0, 0,−0.5,−0.866, 0]T rotation axis in the frame C

gcl(0), gcr(0)

⎡
⎢⎣

0.9397 0.342 0 0.0748−0.342 0.9397 0 0.2055
0 0 1 0.3795
0 0 0 1

⎤
⎥⎦, The initial configuration of the frames L and R

with respect to the trunk fixed frame C⎡
⎢⎣

0.9397 −0.342 0 0.0748
0.342 0.9397 0 −0.2055

0 0 1 0.3795
0 0 0 1

⎤
⎥⎦

0 <hi ≤ 1, 0 < βi ≤ 1, 0 <γi ≤ 1). The joint torque limits
can be indirectly realized by adjusting γ and replacing q̈l
and q̈u with the on-line minimum and maximum acceleration
output under the joint torque limits. We can combine (31),
(32) and (33) to a matrix form as (30); then A and B for joint
velocity constraints have the form

AJ = [−Im

Im

]
2m×m

, (34)

BJ =⎡
⎣−max

(
�ql−q(t)

�t
, βq̇l, q̇(t − �t) + �t · γ q̈l

)
min

(
hqu−q(t)

�t
, βq̇u, q̇(t − �t) + �t · γ q̈u

)
⎤
⎦

2m×1

. (35)

In (27), we have modelled the tip-over avoidance
requirement as a group inequality constraint with the form of
constraint (30). Combining (27), (34) and (35), the available
tip-over avoidant range of the velocity space was formed.
When there is at least one solution in the range for constraint
(29), the optimized algorithm expressed with (28), (29) and
(30) will be effective in path planning for the OMMS system.

We will observe the discontinuity phenomenon in joint
velocity when the TPC is suddenly applied into (30). In
the robot moving process, sustaining efforts must be taken
to avoid tip-over. At the same time, the high-level mission
must be planned again when the TPC is violated. Let vector
u = [u1 · · · us]T ∈ Rs×1 be

u = AT q̇ − BT , (36)

where AT = [(1AT )T · · · (jAT )T · · · (sAT )T ]T ∈ Rs×m, BT =
[1BT · · · jBT · · · sBT ]T ∈ Rs×1. When the robot is stable
respect to the support plane, there exists uj ≤ 0, j = 1, . . . , s.
The optimization criterion (25) for improving stability level
can be reconstructed as Min(maxj (uj )). In fact, minj (uj ) < 0
will always exist even in a robot tip-over with respect to the
support plane. Considering the property of the arithmetic and
geometric mean inequality, we can construct performance
functions with constraints to improve the stability level:

Minimize uT u, (37)

Subject to uj ≤ 0, (38)
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Fig. 6. Optimized solution of IRK without stability consideration and TPC for the OMMS service robot. (a) The wheel rotation velocity.
(b) The left arm joint velocity. (c) The right arm joint velocity. (d) The norm of the virtual power vector u. (e) The x coordinate of the ZMP
in the trunk fixed frame C. (f) The snapshot of the robot movement process.

Where the minimum of the uT u requires ‖ui‖ = ‖uj‖.
Therefore, the optimized solution of the system velocity will
make sure that the ZMP be located in the geometry center of
the CSP in theory.

Combining (29)–(38), the optimized solution with stability
enhancing consideration for the IRK can be constructed:

MinimizeH (q, q̇) = q̇T Wq̇ + λuT u, (39)

Subject to

[
J 0
AT −Is

] · [
q̇

u

] = [
ẋ

BT

]
, (40)

[
AJ 0
0 Is

] · [
q̇

u

] ≤ [
BJ

0m

]
, (41)

where W ∈ Rm×m is the weighted matrix and λ ≥ 0 is a
scalar weight which is used to adjust the tradeoff impact
to the weighted energy of the robot system for tip-over
prevention effort. λ will be zero when the robot is static
and augments with the system kinetic energy. When one
component of u approaches zero, the high-level mission re-
planning algorithm must be activated to avoid the potential
tip-over behaviour caused by an infeasible mission. The
proposed algorithm will be verified in the next section.
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Fig. 7. Optimized solution of IRK with stability consideration and TPC for the OMMS service robot. (a) The wheel rotation velocity. (b)
The left arm joint velocity. (c) The right arm joint velocity. (d) The norm of the virtual power vector u. (e) The x coordinate of the ZMP in
the trunk fixed frame C. (f) The snapshot of the robot movement process.

5. Simulation Results
In order to demonstrate the effectiveness of the above
methods, Matlab was used to implement the control
algorithm and perform the numerical simulation for the
OMMS configuration service robot movement. We presented
four simulation results for comparison. The first was for
the optimized solution of the IRK with only joint velocity
constraints. The second was for the optimized solution
with stability consideration under joint velocity and tip-over
constraints. The third and fourth simulation experiments
were designed to further exhibit the effectiveness of the
proposed method in avoiding tip-over action. A load
increased by degrees was applied on the end-effectors and the

service robot’s end-effectors did not change their position and
pose. The improving stability level effort was considered in
the fourth experiment but not in the third one. The simulation
results for the four experiments are shown in Figs. 6, 7, 8 and
9, respectively. The OMMS system parameters are given in
Table I.

The four simulation examples adopt the same initial
parameters. The initial parameters are qw = [0, 0, 0]T ,
ql = [5◦, 0, 0,−90◦,0, 0,−45◦]T , qr = [−5◦, 0, 0, 90◦, 0, 0,

45◦]T , �i = hi = 0.95, βi = 0.9 and γi = 0.9. The initial world
coordinates frame is chosen with the origin located on
the support plane and the orientation of the trunk fixed
frame C is I3 with respect to the world frame W . The
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Fig. 8. Optimized solution of IRK without stability consideration and TPC for the OMMS service robot. (a) The wheel rotation velocity.
(b) The left arm joint velocity. (c) The right arm joint velocity. (d) The norm of the virtual power vector u. (e) The x coordinate of the ZMP
in the trunk fixed frame C. (f) The snapshot of the robot movement process.

desired path of the end-effectors for the first and second
experiments is designed as moving along a straight line
in T = 10 s from the initial position to the plane x = 2
and keep the end-effectors’ orientation unchanged. The path
is defined as x(t) = x0 + (xd − x0) × 10(t/T )3 − 15(t/T 4 +
6(t/T )5), which has a bell-shape acceleration law. The
sample time is 0.025 s. The weighted matrix in (39) is
chosen as W = diag(0.25, 0.25, 0.25, 2, 1.6, 1, 1, 0.8,
0.75, 0.5, 2, 1.6, 1, 1, 0.8, 0.7, 0.5) ∈R17×17. The CSP
for the two former examples was constructed with three
points in the frame C; the coordinates of the points are
p1 = [0.15, 0, −0.06]T , p2 = [−0.147, −0.2546, −0.06]T
and p3 = [−0.147, 0.2546, −0.06]T .

Figure 6 shows the simulation results without TPC and
improving stability level consideration. The performance

function is defined as the weighed joint velocity norm,
and only joint motion limits (joint range, velocity and
acceleration limits) are considered. In (b) and (c) of Fig. 6,
we observed that the robot’s arms stop movement when the
mission path cannot be fulfilled by arm movement only. After
that moment, the mass distribution of the whole body of the
robot is not changed and only the horizontal component of
the inertial force of the system is changed according to the
mission. Therefore, the support force action on the virtual
twists defined by the boundary of CSP will keep a constant
value, which is shown in Fig. 6(d). On the other hand, the
ZMP movement is decided only by the mission trajectory
after that moment.

Figure 7 shows the simulation results with TPC and
improving stability level consideration. The performance
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Fig. 9. Optimized solution of IRK with stability consideration and TPC for the OMMS service robot. (a) The wheel rotation velocity. (b)
The left arm joint velocity. (c) The right arm joint velocity. (d) The norm of the virtual power vector u. (e) The x coordinate of the ZMP in
the trunk fixed frame C. (f) The snapshot of the robot movement process.

function is defined as the sum of the weighted
joint velocity norm and the weighted vector norm of
u. The λ is defined as λ = λm · 10(|T/2 − t |/T/2)3 −
15(|T/2 − t |/T/2)4 + 6(|T/2 − t |/T/2)5, where λm = 0.36
and is chosen mainly considering the tradeoff with the
weighted joint velocity norm by a trial-and-error process.
Here, the acceleration law of the parameter, λ, is same to
the mission path. In Fig. 7(b) and (c), we can find that the
robot arms keep adjusting the joint velocity to fulfill the re-

quirement of the improving stability level and finish the end-
effector mission trajectory along with the wheel at the same
time. The norm of the virtual power vector u shown in
Fig. 7(d) is smaller than the one shown in Fig. 6(d).
According to the property of the arithmetic and geometric
mean inequality that the minimum value exists when non-
negative variables have the same value, a smaller norm of u

means that the difference of u2
j (j = 1, . . . , s) will be smaller.

It means that the position of the ZMP will be closer to the
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geometry center of the CSP. That will indirectly make the
distribution of the wheels’ support force more balanced when
the geometry center of the CSP locates at the center of the
mobile platform.

In the third and fourth experiments, we enlarge the area of
the CSP by setting the point p1 at [0.294, 0, −0.06]T in frame
C; the other two vertexes of the CSP are same as in the former
experiment settings. This makes all the three vertexes of the
CSP be near to the supporting wheel. The load increased
by degrees on end-effectors is realized by increasing the
two end-effectors’ gravity force with law: F

g

l7(r7) = ml7(r7)g +
200t . The mass centers of the seventh link for left and
right manipulators are at [0.2903, 0.1276, 0.7039]T and
[0.2903, −0.1276, 0.7039]T respectively in frame C.

Figure 8 shows the experiment results without improving
stability level consideration. All the joints of the robot are
static because the pose and position of the end-effectors are
not changed. The ZMP point moves continuously toward
the supporting wheel. At time t = 10 s, the ZMP approaches
the point [0.2903, 0, −0.06]T . It is obvious that the robot will
tip-over with sustainedly increased load on end-effectors if
the projection coordinates of the mass centres of the seventh
link of the manipulators are outside the support polygon. In
this experiment, we can find more obviously that more the
ZMP moves near to the boundary of the supporting polygon,
the more the norm of the virtual power vector increases. This
is consistent with our analysis in Section 4.

Figure 9 shows the simulation results with improving
stability level consideration. In this simulation experiment,
the performance function is defined as the sum of the
weighted joint velocity norm and weighted vector norm of the
virtual power vector u. The λ is defined as λ = 0.005t/T and
is decided by a trial-and-error process. In Fig. 9(a–c) and (f),
we can find that the robot keeps adjusting the joints’ velocity
to fulfill the requirement of the improving stability level and
assure that the end-effectors are static. We can clearly observe
the action of the improving stability method in Figs. 8(f) and
9(f). Comparing Fig. 8(d) and (e) with Fig. 9(d) and (e), it is
observed that the norm of u is successfully suppressed and
the ZMP is adjusted to move far away from the boundary of
the support polygon. At the same time, the method presents a
natural behaviour of the robot to keep support stable, which
is similar to the behaviour of a human in the same situation.

On observing the simulation results presented here, we
have verified the effectiveness of the proposed methods.
The stability level of the robot is successfully improved.
In simulation experiments, singularity avoidance must be
considered in algorithm construction. We adopt the On-line
Task Modification Method (OTMM)17 to realize singularity
avoidance.

6. Conclusions
Taking a service robot with OMMS configuration as a
prototype for the tree topology structure mobile robot, this
paper analysed the general mobile robot dynamics and
dynamic stability attributes with Lie group and screw tools.
The generalized stable support condition for a mobile robot
is constructed not only in a polygonal support region, but

also in a polyhedral support region. For a planar supporting
region, the tip-over avoiding requirement is formulated as
the TPC with the reciprocal products of the resultant support
force screws and the imaginary tip-over twists, which are
constructed with the boundaries of the support region.
For alleviating the computation burden consideration, we
formulate the tip-over avoiding requirement and the joint
motion limits including range, velocity and acceleration
limits as linear inequality constraints at velocity level.
An optimized resolution algorithm with standard QP form
is proposed for the inverse redundant kinematics of the
mobile robot with improving stability level consideration.
Simulation results demonstrated clearly the effectiveness of
the proposed methods.

How to design a general adjusting method or mechanism
to include the improving stability level effort into different
control algorithms and kinds of missions is an open question
for further study.
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Appendix: Tip-over Prevent Constraints for the OMMS
System
According to (7), the inertial wrenches for the trunk, the left
manipulator and the right manipulator of the OMMS system
in frame C have the following forms:

F I
C = McV̇c − adT

Vc
McVc, (42)

CF I
l = 7∑

i=1

AdT
g−1

cli

[
Mli

(
Adg−1

cli

V̇c + Adg−1
cli

(0)
l Ṫi1Vc + Jli q̈l+ J̇li q̇l

) − adT
Vli

Mli

(
Adg−1

cli

Vc + Jli q̇l

)]
, (43)

CF I
r = 7∑

i=1

AdT
g−1

cri

[
Mri

(
Adg−1

cri
V̇c + Adg−1

cri
(0)

r Ṫi1Vc + Jri
q̈r+ J̇ri

q̇r

) − adT
Vri

Mri

(
Adg−1

cri
Vc + Jri

q̇r

)]
. (44)

Substituting (42), (43) and (44) into (26), the acceleration
related component in TPC has the form

ξT
i

[
Mc + 7∑

i=1

AdT
g−1

cli

MliAdg−1
cli

+ 7∑
i=1

AdT
g−1

cri

Mri
Adg−1

cri× 7∑
i=1

AdT
g−1

cli

Mli Jli

7∑
i=1

AdT
g−1

cri

Mri
Jri

] ⎡
⎢⎣

V̇c

q̈l

q̈r

⎤
⎥⎦ . (45)

Applying the difference relation q̈(t − �t) = (q̇(t) −
q̇(t − �t))/�t for q̈ = [V̇ T

c q̈T
l q̈T

r ]T , the TPC at velocity
level has the form

iAT (q(t − �t))q̇(t) ≤ iBT (q(t − �t)), (46)

where⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

jAT (q(t − �t)) = ξT
j Ms

jBT (q(t − �t))= ξT
j Msq̇(t − �t) + �tξT

j (FG + FM ) − jD

Ms = [
MC + ∑7

i=1 MC
li + ∑7

i=1 MC
ri

∑7
i=1 AdT

g−1
c,li

MliJli× ∑7
i=1 AdT

g−1
c,ri

MriJri

]
MC

li = AdT

g−1
c,li

MliAdg−1
c,li

MC
ri = AdT

g−1
c,ri

MriAdg−1
c,ri

jD = �tξT
j

(
adT

VC
MCVC(t − �t) + Cl + Cr

)
Cl = ∑7

i=1 AdT

g−1
c,li

(MliJ̇li q̇l(t − �t)+ MliAdg−1
c,li (0)

l Ṫi1Vc(t − �t)−adT
Vli (t−�t)MliVli(t − �t))

Cr = ∑7
i=1 AdT

g−1
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(MriJ̇ri q̇r (t − �t)+ MriAdg−1
c,ri (0)

r Ṫi1Vc(t − �t)−adT
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