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 Abstract 
 

In this paper we present a pose estimation 
algorithm based on four coplanar point 
correspondences. Given four coplanar points and their 
corresponding image points under a perspective 
camera, plus the camera’s intrinsic matrix, the 
camera’s rotation and translation relative to the object 
plane is determined directly. In essence, the pose 
estimation problem is converted to the calculation of a 
planar homography between the object plane and the 
image plane. Experiments with both synthetic data and 
real images verify the correctness of this algorithm.  
 1. Introduction 
 

Pose estimation is a hot spot in both 
photogrammetry and computer vision, and is widely 
used in robot navigation, hand-eye coordination, visual 
servoing, ect. Specifically, accurate and fast pose 
estimation is the foundation for augmented reality, in 
which case we need to compute the camera’s pose 
relative to the marker with high precision in real time. 
Different kinds of features can be used for pose 
estimation, such as correspondence from points, lines, 
curves, and surfaces. Liu et al [1] used four 
corresponding straight lines to compute the camera’s 
relative pose. The outstanding augmented reality 
toolkit, ARToolkit [2] also uses four straight lines. The 
line correspondence paradigm possesses the merit that 
lines are easy to detect. However, they also bear the 
disadvantages that they are inclined to fail in the case 
of occlusion. If part of the surrounding rectangle is 
occlude, ARToolkit cannot determine the pose of the 
marker. Pose estimation from curve or surface features 

is a relative new method [3], but it is too sophisticated 
and imposes more difficulties on the detection of these 
features. Therefore, we focus on the point 
correspondence based pose estimation problem.  

Pose estimation from point correspondences is 
coined as the “perspective-n-point” problem (PnP) [4]. 
Based on whether or not the camera’s intrinsic matrix 
is known at a priori, different number of points is used. 
According to Haralick [5], the “perspective-three-
point” problem (P3P) was first solved by the German 
mathematician Grunert in 1841. However, it is no early 
than 1981 until this problem was brought into the 
computer vision community by Fischler and Bolles[4]. 
They derived a direct solution to this problem and 
revealed that through three points people cannot obtain 
a unique solution (generally there exists four 
ambiguities). Long Quan and Zhongdan Lan [6] 
proposed a family of linear methods that yield a unique 
solution to four point pose determination for generic 
reference points. However, their algorithm needs 
double SVD decomposition and is computational 
expensive. DeMenthon and Davis[7] combined the 
direct and iterative algorithms to solve the P4P 
problem with only 25 lines of code which is known as 
the POSIT algorithm. It is accurate and fast. But it 
requires that the four points must not be coplanar. 
Nister [8] used five points and solved the P5P problem 
by computing the coefficients of a tenth degree 
polynomial in closed form. In essence, he used the 
essential matrix between two views and obtained the 
relative rotation and translation through the 
decomposition of the essential matrix. Without the 
camera’s intrinsic parameters given as a prior 
knowledge, there are lots of literatures using seven or 
eight point correspondence such as [9]. In essence, 
these literatures convert the pose estimation problem 
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into the computation of the fundamental matrix and 
obtain the relative rotation and translation by 
decomposing the fundamental matrix. 

In this paper, we focus on the P4P problem. 
Specifically, all the four points lie on the same plane 
but none of the three are collinear. We focus on this 
coplanar P4P problem because it is of special 
importance for the marker based augmented reality, in 
which case the marker is usually a plane. The 
remainder of this paper is organized as follows: 
Section II gives a formal statement for the coplanar 
P4P problem. Section III illustrates our algorithm 
which determines a unique solution using four 
coplanar point correspondences. In section IV, 
experiments with both synthetic data and real images 
are presented. In the last section, we conclude our work 
and give some discussions. 

 2. Problem Statement 
 

Given four coplanar points, among which none of 
the three are collinear, and given their corresponding 
image points under a perspective camera, plus the 
camera’s intrinsic parameters (especially, the camera’s 
focal length and principal point), determine the 
camera’s pose (translation and rotation, six degrees of 
freedom) relative to the object plane. 

As shown in Figure 1, 4
1,2,3,4iQ = ∈ℜ  are the 

homogenous coordinates of the four points on the 
object plane Π , ( , , , )T

i i i i iQ x y z w= . 3
1,2,3,4ip = ∈ℜ  

are the corresponding homogenous coordinates on the 
image plane. ( , , )T

i i i ip x y λ′ ′= .  

 Figure 1. Graph showing the relationship between the object plane and the image plane If the camera’s intrinsic matrix is K, where 
0

0
0 0 1

x x

y y

f c
K f c

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 with xf , yf  as the focal 

length, and xc , yc  the principal point, we have 

3 3[ | ]p KR I C Q×= −                       
(1) 
where R is a 3 3× rotation matrix representing the 
orientation of the camera coordinate frame, and C is a 
3 1× vector representing the origin of the camera 
coordinate frame in the world coordinate frame. Since 
all the four points are coplanar, we can set the world 
coordinate frame in such a way that the plane Π  
coincides with the Oxy plane. That means all the four 
points iQ  can be represented as 

( , ,0, )T
i i i iQ x y w= .Substitute Q into equation (1) 

we have 

1 2[ ]p K R R RC Q= −               
(2) 
where 1R , 2R  are the first and second column of R, 

( , , )T
i i i iQ x y w= . As long as the third coordinate of 

C is not equal to zero, i.e., the origin of the camera 
coordinate frame is not on the 
plane Π , 1 2[ ]K R R RC−  is reversible and hence 

we can use a planar homography H to relate p and Q : 

1 2[ ]p K R R RC Q HQ= − = , 3 3H ×∈ℜ   
(3) 
As stated above, the intrinsic matrix K is known at a 
priori, hence we can multiply the inverse of K at both 
sides of equation (3) and get the following form 

1
1 2[ ]p K p R R RC Q H Q−′ ′= = − =       

(4) 
where ( , , )T

i i i ip u v λ′ = . Usually the last element of 

the homogeneous vector p′ is set to 1 through dividing 

itself by iλ . 
Hence the problem can be restated as: given the 

four points’ coordinates in the world coordinate 
frame 1,2,3,4 ( , ,0, )T

i i i iQ x y w= = , and their 
corresponding image plane coordinates 

1,2,3,4 ( , , )T
i i i ip u v λ=′ = , plus the camera’s intrinsic 

yc 
xc 
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matrix 

0
0
0 0 1

x x

y y

f c
K f c

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

, find the relative 

rotation matrix R and translation vector C. 
 3. Pose from Four Points 

 
Through the above analysis, the pose estimation 

problem is converted to the calculation of a planar 
homography matrix. According to equation (4), p′  

equals to H Q′  up to a scale, there are eight unknown 
elements in H (nine elements minus one for the overall 
scale). Each point correspondence provides two 
constrains. Therefore, four non-collinear point 
correspondences can determine a unique H ′ . 
As stated above, p′  equals to H Q′  up to a scale, 
equation (4) can be expressed in the cross product form 
as 

0p H Q′ ′× =                           
(5) 
And  

3 2

1 3

2 1

0

T T
i

T T
i

T T

vh Q h Q
p H Q h Q uh Q

uh Q vh Q

λ
λ
⎛ ⎞−
⎜ ⎟′ ′× = − =⎜ ⎟
⎜ ⎟−⎝ ⎠

    

(6) 
where iTh  is the i-th row of H ′ . 
Equation (6) can be rearranged as  

1
1 3

2
1 3

3
1 3

0
0 0

0

T T
i i i

T T
i i i

T T
i i

Q vQ h
Q uQ h Ah

vQ uQ h

λ
λ

×

×

×

⎛ ⎞⎛ ⎞−
⎜ ⎟⎜ ⎟− = =⎜ ⎟⎜ ⎟

⎜ ⎟⎜ ⎟− ⎝ ⎠⎝ ⎠

    

(7) 
where 3 9A ×∈ℜ , 9 1h ×∈ℜ . It is apparent that only 
two rows of A are linearly independent, hence we can 
reduce A to 2 9×ℜ and equation (7) becomes 

1

1 3 2

31 3

0
0

0

T T
i i i

T T
i i i

h
Q vQ

Ah h
Q uQ h

λ
λ

×

×

⎛ ⎞
⎛ ⎞− ⎜ ⎟= =⎜ ⎟⎜ ⎟⎜ ⎟−⎝ ⎠⎜ ⎟

⎝ ⎠

          

(8) 
Each point correspondence provides such an 

equation. So with four point correspondences, we can 
stack each of such equation together and get a 
matrix 8 9A ×∈ℜ . Matrix A has rank 8 with h as its 
null space. There are plenty of methods to solve this 

kind of homogenous equations. For example, we can 
compute the SVD decomposition of A. h is the singular 
vector corresponding to the smallest singular value 
[10]. Once 9 1h ×∈ℜ  is obtained, we can rearrange it 
as 3 3H ×′∈ℜ . To obtain the rotation matrix from H ′ , 
we need to normalize H ′  as the following 

1

HH
H

′′ =
′

                            

(9) 
In this way, the first and second columns of H ′ are 

converted to unit vectors and hence we get the first and 
second columns of the rotation matrix R (according to 
equation (4)). The third column of R is computed as 
the cross product of 1R and 2R . The translation vector 
of the camera coordinate system’s origin is computed 
as 

3
TC R H ′= −                          

(10) 
 4. Experiments 
 4.1. With Synthetic Data 
 

The experiment with synthetic data is carried out 
following seven steps: 
1). Generate four random points on the object plane: 

( , ,0,1)T
i i iQ x y= . ix and iy  follow a uniform 

distribution on a specified interval [a,b]. In our 
experiment we choose a=-3, b=3; 
2). Generate three random angles rotX, rotY, rotZ 
which follow a uniform distribution on the 
interval[ ],π π− . Hence the three rotation matrixes are 
computed as 

1 0 0
0 cos( ) sin( )
0 sin( ) cos( )

Rx rotX rotX
rotX rotX

⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥⎣ ⎦

,

cos( ) 0 sin( )
0 1 0

sin( ) 0 cos( )

rotY rotY
Ry

rotY rotY

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥−⎣ ⎦

,

cos( ) sin( ) 0
sin( ) cos( ) 0

0 0 1

rotZ rotZ
Rz rotZ rotZ

−⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 

The overall rotation matrix is computed as 
R Rx Ry Rz= ⋅ ⋅ . 
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3) Generate a translation vector 1 2 3( , , )TC t t t= . 

1t , 2t and 3t follow a uniform distribution on an interval 
[-1,1]; 
4) Set the camera’s intrinsic matrix equal to identity. 
Hence the overall camera matrix is 

[ ]camP K R RC= − . 
5) Following equation (1), the image points are 
computed as 3 3[ | ]p KR I C Q×= − . 
6) Convert the image point p to its inhomogeneous 
form. 
7) Computer the homography matrix H using the 
algorithm presented in section III and finally obtain the 
rotation matrix cR  and translation vector cC . We use 
the subscript c to distinguish the computed result from 
the true value. 

Figure 2 shows the result. The four object plane 
points are marked by a red *. The green lines represent 
the skeleton of the camera’s true position. The red lines 
represent the skeleton of the camera’s calculated 
position. They coincide together which indicates that 
the computed pose match the true pose correctly. (We 
adapt some functions of EGT [11] to plot this figure.) 
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 Figure 2. Experiment result with synthetic data. 
 4.2. With Real Images 
 
To test the POSIT algorithm, literature [7] constructs 

a video based 3D mouse to control a cube. The 3D 
mouse is simply a combination of a web-camera and 4 
small infrared sources. With the coordinates of these 
infrared sources in the object coordinate frame and 
their corresponding image coordinates, the relative 
pose of the camera is computed with POSIT algorithm 
and is used to control the cube such that the cube 
moves following the movement of the camera. 
Enlightened by them, we construct a similar video 
based 3D mouse shown in Figure 3(a). It is just a CD 

with four red marker equally distributed. The distance 
between the red marker and the CD’s center is 49mm. 
We then use a web-camera and CamShift algorithm to 
track these four markers and obtain their centroids’ 
image coordinates. The tracked markers are 
highlighted with red ellipses as shown in Figure 3(b). 
The object’s pose relative the web-camera is computed 
using the algorithm proposed in this paper and is used 
to control a cube drawn with OpenGL. This 
experiment indicates that our algorithm can determine 
the relative pose correctly and rapidly. 

   (a)                                         (b) 
 (c) Figure 3. Experiment with real images. (a) shows the simple “3D mouse” with four markers. (b) shows the tracking of these four markers with CamShift algorithm. (c) shows the cube drawn with OpenGl control by the “3D mouse” using our pose estimation algorithm. 

 5. Conclusion 
 

In this paper we demonstrate a method for solving 
the planar point correspondence based pose estimation 
problem. Because of the planarity, this problem is 
naturally converted into the computation of 
homography between planes. Through utilizing the 
mature homography computation algorithms, our 
method can be easily extended in the following ways. 
On one hand, more points can be used to improve the 
algorithm’s robustness. For example, with more than 
four points, we can use RANSAC [4] to remove the 
disturbance of outlier points. On the other hand, 
because the duality of points and lines, line features 
can also be used to computer the homography and 
hence obtain the relative pose in a similar manner. 
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