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SUMMARY
This paper presents a distributed multiple mobile robots
framework which allows programming and control of
virtual and real mobile robots. The system provides the map
building, path planning, robot task planning, simulation,
and actual robot control functions in an indoor environment.
Users can program the virtual robots in a customized
simulation environment and check the performance of
execution, i.e., if the simulation result is satisfying, users
can download the code to a real robot. The paper focuses on
the distributed architecture and key technologies of virtual
robots simulation and control of real robots. A method
for construction and transfer of a key index value (which
stores the robot configuration) is proposed. Using this
method, only the robot key configuration index is needed to
build the robot in the virtual environment. This results in
reduced network load and improved real time performance
of the distributed system. Experiments were conducted to
compare the performance of the proposed system with the
performance of a centralized system. The results show that
the distributed system uses less system resources and has
better real time performance. What is more, this framework
has been applied to Yaskawa’s robot “SmartPal.” The
simulation and experiment results show that our robotic
framework can simulate and control the robot to perform
complex tasks.

KEYWORDS: Mobile robot; CORBA; Simulation; Real
robot control.

1. Introduction
In recent years there is an increase in the use of robots in fields
of replacing humans to fulfill complex and dangerous tasks.
The robotic system must be reliable and coordinated while
finishing different subtasks such as perception, planning,
and navigation. Thus some robotic platforms have been
developed to test the control algorithms and to evaluate the
robot performance.

Currently, we at Research Institute of Robotics in Shanghai
Jiao Tong University are developing a robotic simulation
and control framework in collaboration with robot producer
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Yaskawa Electric Corporation, Japan, entitled “Simulation of
Mobile Robots Navigation (SMRN),” based on their interest
in distributed precise simulation and control for mobile robot
SmartPal.1 This project was initiated and a new framework
proposed due to the lack of specific functionalities which
are prerequisites specified by Yaskawa for their SmartPal
robots, such as, support for multiplatforms (OS) or system
portability, 2-D and 3-D generator and simulator, etc., which
are not currently supported in other simulation frameworks.
These other frameworks will be briefly described in the next
section.

Our previous work realizes a centralized simulation and
control system. The users can easily program a dual-arm
mobile robot, preview, and check the robot motion in a 3-D
simulation environment.2 However, due to a need for a large
amount of precise calculations that need to be performed, the
system uses a considerable amount of computing resources,
which makes it difficult for it to be used on a normal PC
for multiple mobile robot simulations. Thus, a distributed
flexible navigation simulation system based on CORBA3–5

was developed. We have also implemented our system
into SmartPal robots. There are currently no other existing
CORBA systems which provide such a complete set of
services for mobile service robots.

Our system can be divided into several components: a
MapEditor server, a simulation server, and robot clients. They
are connected via the CORBA bus and can be deployed
in different PCs with different operating systems, which
extends the portability of the system. The system provides
map building, path planning, simulation, and actual robot
control services. A robot “key index” is proposed to describe
the robot’s model. Each robot’s kinematics motion can be
calculated in different client modules separately. Each client
processes computationally expensive tasks such as calculat-
ing the related robot’s kinematics motion according to its key
index value and rebuilding the robot and its local environment
scene. Other key technologies, such as multirobot simulation
and control mechanism, and seamless migration between
simulated and actual robots are also proposed.

The remainder of the paper is organized as follows:
Section 2 introduces the related works. Section 3 presents
our distributed simulation and control simulation system
architecture. Section 4 introduces the related mobile robot
SmartPal. The proposed key technologies are presented in
Section 5. Experiments to test the distributed system are
shown in Section 6. And the conclusion is given in Section 7.
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2. Related Works
With the rapid progress in computer and communication
technology, robotic systems are fast becoming larger and
more complicated. Therefore, a framework is required that
can integrate reusable components for which various com-
panies and individuals contribute their technologies. Many
researchers have proposed and implemented their solutions
respectively. ORiN (Open Resource interface for the Net-
work/Open Robot interface for the Network) is a middleware
framework, which offers the standard communication inter-
face over various FA (factory automation) equipment includ-
ing a robot, but it is mainly developed for industrial robots
in some structural environments.6,7 Orocos is a free software
project that includes a set of class libraries and application
framework, and a hard-real-time kernel for all possible
feedback control applications.8,9 Toshiba has proposed the
open robot controller architecture (ORCA) based on the robot
technology (RT) reference model proposed by Toshiba, so as
to allow RT components to be easily packaged. ORCA uses
distributed object technology to enable such components to
be used transparently anywhere via the network.10,11 SONY
is actively promoting OPEN-R, which involves the use of
modular hardware components, such as appendages that can
be easily removed and replaced to change the shape and
function of the robots, and modular software components that
can be interchanged to change their behavior and movement
patterns. However it is only developed for SONY’s four-
legged entertainment robot prototype.12

BREVE is a simulation environment meant for the
development of artificial life in a physically simulated
world. It uses a scripting language that allows control
strategies and event-based reactions to the environment
for large numbers of agents.13 CARMEN14 uses the
middleware framework MARIE (Mobile and Autonomous
Robot Integrated Environment)15 to build the mobile robot
control and simulation system. However, there is still not an
integrated platform that supports customized environment
modeling, graphical programming, virtual robots simulation,

and real robots control functions. Some platforms, such
as Player/Stage/Gazebo, provide environment modeling,
simulation, and real robot control, but it can only be used
on a Linux operating system.16,17 The Microsoft R© Robotics
Studio is a Windows-based environment for hobbyist,
academic, and commercial developers to create robotic
applications for a variety of hardware platforms. It includes
a lightweight REST-style, service-oriented runtime, a set of
visual authoring and simulation tools, as well as tutorials
and sample code to help users get started. However, all of
these systems are mainly developed for general robots, so
it is difficult to realize an appropriate simulation and real
control for redundant dual-arm mobile robots.

3. System Architecture
The architecture of the distributed system is presented in
Fig. 1. It comprises three components: a MapEditor server,
a simulation server, and robot clients. The MapEditor server
is responsible for an indoor simulation environment model
building and path planning services. The simulation server
provides the virtual sensor and simulation services to allow
obstacle avoidance. Its Omni database keeps records of all
the information of the simulation. The robot client invokes
the methods from the CORBA server and presents the 3-
D simulation result to the users. These functional parts
communicate via the CORBA bus.

As a result of using CORBA, the service implemented
object in these servers can be remotely and transparently
invoked from the clients regardless of their hardware,
operating systems, and programming language. All the
servers and clients can be distributed on different computers
using CORBA middleware, the JavaTM IDL developed by
Sun Microsystems.18 JavaTM IDL is freely available and is
a fully compliant implementation of the CORBA standard. It
provides interoperability between applications on different
machines in heterogeneous distributed environments and

Fig. 1. System architecture.
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Fig. 2. Two maps in a MapEditor: (a) geometrical map, (b) topological map.

seamlessly interconnects multiple-object systems. Each
component of the system is presented as follows.

3.1. MapEditor server component
The MapEditor server is used as a unique virtual environment
for multiple mobile robots to work in. The server contains two
modules: a map building module and a path planning module.
The user can build a customized environment according to
a real world using a map building module, save the objects’
shapes, positions, and other geometrical data in a geometrical
map, and save the path nodes in a topological map as well
(Fig. 2).

The path planning module is used to determine a feasible
path between the start and the end points specified by the user.
Figure 3 shows a communication example between the robot
client and the path planning module. In Fig. 3(a), the client
specifies the start point and the end point, calls the “getPath”
method using the CORBA interface, and receives a set of path

points from the path planning module. Figure 3(b) shows
the map for topological information. Figure 3(c) shows the
format of path points returned by the server.

3.2. Simulation server component
In the simulation server, the communication management
module is responsible for recording all the registered
information from the clients and to realize a simple load
balance. All robot clients that want to join the simulation
environment must first register with this module. The
management module accepts the client’s request and puts
the client’s name in the register list. The robot client can call
on the required methods using the CORBA interface. If the
number of clients reaches the upper limit of the permissions
allowed, the communication management module will
disallow other clients from logging on to the server.

All the simulation data is stored in the Omni database.
It contains an elevators data list and a floor data list which

Fig. 3. Path planning communication: (a) communication process, (b) metric and topological identifier, (c) Data structure.
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records multiple floor information of a whole building. This
data structure makes it easier to exchange the single floor’s
data between the Omni database (simulator server) and the
data pool of a robot client.

The 2-D simulator server loads the data from the Omni
database and draws the simulation scene in a 2-D image.
This tool has the capability of displaying the simulation scene
and to allow the user to monitor the simulation in the whole
building. In the monitor panel, users can observe different
floor scenes, see the robots’ positions and velocities, and
receive the data from the virtual sensors.

The virtual sensor module provides virtual laser range
finder service and proximity sensors service. It receives the
robot client’s request with parameters such as the position of
the robot and the position and direction of the virtual sensor,
and returns laser scan angles and distance information. The
information is similar to the information returned by a real
sensor but it does not take into account the sensor error and
the noise. Usually, a virtual robot just follows a trajectory
predefined by a graphic programming module, and the virtual
sensor data are used by the virtual robot to detect the dynamic
obstacles which are not predefined. So the virtual robot can
take into account the obstacles present and feed this data into
the path planning module and obtain a new feasible path.

3.3. Robot client component
The robot client is a development module for users to
program, control, and observe a virtual robot in a simulated
environment or an actual robot in the real world. It is
structured in the CORBA client that calls methods from
different server components. One robot client component
stands for one virtual or actual robot. The modules in the
robot include the following:• Graphic programming module (GPM): It is used to specify

the robot’s task by using a list of motion icons (Fig. 4). The
user can edit the robot key index values in the teaching

box to define a motion and check the result in its 3-D
viewer. Once an icon is programmed, it can be saved into
an icon list. Using this module the user can program the
robot to complete the motion tasks.• Control Module: There are two modes: virtual robot mode
and the actual robot mode. In the virtual mode, the module
calls the SmartPal robot’s virtual “Kinematics Engine”19

to calculate each linkage position, and returns the results
to the GPM. Then the GPM sends the robot’s data to the
data pool for 3-D simulation in the robot client. In the
actual robot mode, the module can download the codes to
an actual robot to execute the related task.• Data Pool: It is used to save simulation data related to
the current robot. For example, if a virtual robot is on
the second floor in a building simulation environment
with multiple floors, its data pool only keeps the objects’
information on the second floor.• 3-D Simulator & Monitor: It loads the simulation data
from the data pool, and constructs the robot in a 3-D virtual
environment. When the simulation is verified, users can
download the codes to a real robot for execution.

4. Mobile Robot SmartPal
The system which is presented in this paper has been realized
on the dual-arm mobile robot SmartPal. So far it is mainly
used as a service robot. Figure 5 shows a SmartPal used for
experiments in an indoor environment. It is equipped with a
pair of 7-DoF (degrees of freedom) arms and grippers. An
omni-directional wheel platform is used for planar motion.
The sensors equipped in the robot include a laser range sensor
in the waist and eight proximity sensors mounted around the
omni-directional wheel platform. The Liquid Crystal Display
and touch panel are attached to the front of the robot’s
upper body. They are used for displaying the robotic current
internal state (e.g., working, waiting, exceptional) or for user
interaction (e.g., choosing the work model).

Fig. 4. The graphic programming module.



CORBA-based simulation and control framework for mobile robots 463

Fig. 5. SmartPal robot.

5. Key Technologies in the Distributed Simulation
and Control

5.1. Robot’s key index definition and construction
The virtual robot is constructed using Java3D. The virtual
robot comprises several basic parts which are described by
VRML (Virtual Reality Modeling Language). To assemble a
SmartPal robot, the basic parts are defined as a Branch Group
and the robot joints are defined as a Transform Group. These
joints and parts of a SmartPal robot, shown in Fig. 6, are
described in Java3D as a node chain.

We define the robot joints’ angles, positions, and the
distance values in x and y directions as the key index. Only
key index is needed to construct the robot.

In order to realize the key index transfer in the distributed
system, we define the robot’s key index data structure in the
CORBA interface. Its UML is shown in Fig. 7.

Users can invoke the methods “send KeyIndex()” and
“receive KeyIndex()” to transfer and share multiple robots’
key indexes. Once the key index is obtained, we use it
to rebuild the related robot and control the virtual or real
robot. Figure 8 displays the coordinate frame chain, rotation
directions, and angles of robot rotation. In this way, the
position of each joint in robot structure can be described.

5.2. Multirobot control and simulation mechanism
Multithreading in Java is used to realize the multirobot
control or simulation. Two threads are set up: a manipulation

Fig. 6. Architecture of robot basic nodes.
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Fig. 7. The UML of CORBA interface.

Fig. 8. Coordinate chain on robot rods.

thread and a detection thread. In order to improve the real
time performance of the system, a data pool is created in the
client to store the current local environment and robots’ state
information. The robot client need not always invoke the
whole Omni database information on the server side, but just
call the local environment data from its own data pool. The
threads mentioned access the data pool alternately. There
is a “supply and demand” relationship between them. As
presented in Fig. 9, the manipulation thread calls the control
module to obtain the current robot information and updates
the data in the data pool. The data pool also exchanges data
with the Omni database. For more efficiency, if a robot is
positioned on a certain floor, in the client’s data pool, only
the data of the robots and objects on that specific floor is
loaded. The detection thread checks the data pool constantly
and, as soon as there is a change in the data pool, the robot
is rebuilt in the 3-D simulator and monitor module. This
mechanism is implemented for all the robots in a multirobot
system.

Fig. 9. Multirobot simulation mechanism.

5.3. Seamless migration between simulated and actual robots
This system can be applied to both virtual and physical
robots. If the program for a new job is satisfied in simulation,
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Fig. 10. The architecture of migration between simulated and actual
robots.

the code can be downloaded to real robots. The related
architecture is shown in Fig. 10.

The control component uses a model switcher to set either
a simulated or a real robot control model. If the switcher is
in “simulated model,” the high controller will use a “robot
simulation adapter” to invoke the “virtual controller API”
which reads the robot’s current status from the “Kinematics
Engine,”19 which is provided by Yaskawa, and return to
the graphic programming environment. If the switcher is
in “Control Model,” the high controller will use a “Robot
Hardware Adapter” to invoke the “I/O library API” to control
the hardware.

6. Experiments and Results
Experiments were performed to compare the system load
between the centralized system2 and the distributed system
which is used for controlling actual robots or simulation.

Each computer in the experiments had a Celeron (R)
CPU 2.40 GHz and 1230 M usable memory (512 M physical
memory and 718 M virtual memory).

First, the centralized system was used to perform the
multiple-robot simulation. Figure 11 presents the utilization
rate of the CPU (Fig. 11(a)) and the memory (Fig. 11(b))
in the centralized system. The utilization rate of both the
resources increased linearly with the number of robots in the
simulation. The experiment with four or more robots failed
due to lack of memory.

In the distributed system, the MapEditor server and the
simulation server were installed on a server computer. Five
virtual robot clients were created to work together in a
virtual floor environment. In order to show the CORBA-
based system’s independence, the MapEditor server and
simulation server ran on Microsoft Windows XP Professional
with Service Pack 2, and the other robot clients ran on
Linux (Ubuntu 6.10 kernel 2.6.17-11-generic). Each robot
executed its motion list separately and followed a predefined
trajectory. Each robot’s kinematics status was calculated via
the related motion module in each robot client and sent to
the simulation server. The simulation is shown in Fig. 12.
Because there were no dynamic obstacles predefined in this

Fig. 11. Centralized system load: (a) CPU utilization, (b) memory utilization.

Fig. 12. The scene of the simulation.
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Fig. 13. Distributed system load: (a) server computer CPU utilization, (b) server computer memory utilization.

experiment, the virtual sensors were not used. The computers
were interconnected via a fast Ethernet (10 Base T). Fig-
ure 13 presents the rate of the CPU and the memory
utilization with an increase in the number of connected
clients. Both rates of increase in the CPU usage and memory
usage of the distributed systems were less than in the case
of the centralized system. In this case that three clients
connected to the server computer, for a three-robot simulation
(Fig. 13(b)), shows that the server computer only spends
63 MB of memory, and the CPU average utilization is 26.58%
(Fig. 13(a)). The maximum CPU usage is 43.8% which is less
than in the case of the centralized system.

The advantage brought about by the distributed system
demanded less CPU and memory usage. However, its
shortcoming is that the clients need a longer response time
between the start of a method invocation and the arrival of
the returned data. Figure 14(a) presents the instantaneous
response time recorded over 20 s of simulation. The average
response time value increased with the number of robots in
the simulation, as shown in Fig. 14(b). In the case where five
clients called the service from the server, the maximum of
instantaneous response time is less than 100 ms, which meets
the requirements of a mobile robot simulation.

Finally, the code of robot I is downloaded to a real robot. It
is designed to handle a task of handing over a piece of paper.
The code is composed of a sequence of subtasks: like “move
to the desk A,” “pick up the paper,” “turn back,” “move to door
B,” and so on. Figure 15 displays the screens of the simulation

and the actual robot. It shows that the proposed system can
control the robot SmartPal to finish complex tasks.

7. Conclusions
In this paper, a CORBA-based distributed programming
system is proposed to realize the control and simulation of
multiple mobile robots. In comparison to some non-CORBA
systems, such as Player/Stage/Gazebo, Microsoft Robotics
Studio, and so on, our system facilitates interoperability of
different operating systems (the experiment in Section 5
executed in Windows and Linux OS has demonstrated this
feature). In comparison to some CORBA systems, such as
ORCA, BREVE, CARMEN, and so on, our system provides
the robot’s map building, path planning, graphic motion
planning, simulation, and actual robot control function.
Users can program virtual robots in a customized simulation
environment, and check the executing performance; if the
simulation result is satisfying, users can download the code to
a real robot to execute. The robot key index for configuration
is proposed and transferred between different robotic clients,
and the robots are built in a virtual environment. This results
reduced network load and improved real time performance of
the distributed system. What is more, we have implemented
our system to Yaskawa’s “SmartPal” robot. The simulation
and experiment results show that our robotic framework can
simulate and control the robot to perform some typical daily
tasks such as picking and placing everyday objects (e.g.,

Fig. 14. Response time in distributed system communication: (a) instantaneous response time, (b) average response time.
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Fig. 15. Seamless migration between a simulated and real robot.

cups, glasses, bottles, plates, and cutlery) as well as operating
switches (e.g., light, coffee machine, and cooker) and handles
(e.g., doors, drawers, and refrigerators). It is expected that
this framework will significantly aid in the development of
dual-arm mobile robots in the home environment.
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