
International Journal of Robotics and Automation, Vol. 23, No. 1, 2008

RESOLVE REDUNDANCY WITH
CONSTRAINTS FOR OBSTACLE AND

SINGULARITY AVOIDANCE SUBGOALSC. Qiu,∗ Q. Cao,∗ and Y. Sun∗Abstract
In this work we analyse the general form solution of the Inverse
Redundant Kinematics (IRK) problem from a geometric point of
view. We propose two new methods, Velocity Projection Con-
straints Method (VPCM) and On-line Task Modification Method
(OTMM), which formulate the obstacle and singularity avoidance
as constraints, and will be incorporated in the standard Quadratic
Programming (QP) method to resolve the IRK problem. This will
avoid the compromise or conflict between weighted optimization
criteria for the obstacle and singularity avoidance subgoals, as well
as the complicated weight adjustment process. The OTMM is effec-
tive not only to redundant manipulators but also to nonredundant
manipulators. Numerical simulation examples validate and prove
the effectiveness of the proposed methods.Key Words
Inverse redundant kinematics, obstacle avoidance, singularity avoid-
ance, dynamic constraints, Quadratic Programming method1. Introduction
Due to the remarkable ability to reconfigure the manipula-
tor without changing the end-effector pose, redundant ma-
nipulators can perform specific tasks while satisfying mul-
tiple restrictions such as singularities [1], obstacles [2–14],
joint motion limits (joint range and velocity limit) [2–6],
and at the same time optimize dynamic performance crite-
ria [2–10]. Redundant manipulators have more degrees of
freedom (DOF) than that required by the task, and due to
this fact there exist an infinite number of solutions for the
Inverse Redundant Kinematics (IRK) problem. Thus, in
order to take full advantage of their dexterity, redundant
manipulators are the object of development and imple-
mentation of many methods in current robotics research,
such as the pseudoinverse method [15], the Extended Jaco-
bian Method (EJM) [16], the Gradient Projection Method
(GPM) [17], the Lagrange Multiplier Method (LMM) [18],∗ School of Mechanical Engineering, Shanghai Jiao Tong Uni-
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the Quadratic Programming (QP) method [4–7], the Di-
rect Search Method (DSM) [8–10], the Artificial Neural
Network Method (ANNM) [11–13, 19–22], and the Linear
Programming (LP) method [19, 23].

GPM extends the pseudoinverse solution by projecting
the Gradient of Optimization Criteria Function (GOCF)
in the null space of Jacobian matrix, and then calculates
the joint velocity to optimize the criteria for the Obstacle
Avoidance (OA) [2, 3] and/or Singularity Avoidance (SA)
[1, 24]. In applications, much effort must be invested in
adjusting the nonnegative scalar of the projected velocity
in order to obtain joint velocity smoothness and to meet
the joint motion limits requirement. Baillieul introduced
the EJM method [16], which constrains the GOCF to
be in the null space of the Jacobian matrix. Chang
[18] presented the LMM method, which constrains the
GOCF to be in the range space of the Jacobian matrix.
Charles [25] has given a deep analysis and proved that the
EJM and LMM are equivalent. EJM and LMM augment
task space with subtask and impose strong limitations on
manipulator’s configuration. Rigorous requirements for
the initial configuration, limited ability for realizing multi-
subtasks, algorithmic singularity, and less consideration of
the joint motion limit are their main drawbacks [8, 10, 16,
25, 26]. However, the closed-form solution can be found
with EJM and LMM under nonsingularity situations [25].

For the compact QP method of Cheng et al. [4–7],
the OA, SA, and drift-free were formulated as weighed
quadratic objective function together with solution feasi-
bility objective function, such as minimum 2-norm of joint
velocity. Ding et al. [20] and Ho et al. [23] formulate the
IRK as an LP problem. The main difference, compared to
the QP based method, is the type of the objective function.
Ho et al. [23] pointed out that an additional smoothness
measure must be considered in the LP method to avoid the
jittering of the joint trajectory.

On configuration manifold, the DSM [8–10] searches
for the solution vector, which reduces the tracking error of
the end-effector and optimizes performance criteria. The
DSM is more suitable and comprehensive than the QP
method to evaluate the configuration control quality in
view of operation task fulfilment, but is less efficient from
the real-time implementation point of view.22



In recent years, new interest has arisen in using Ar-
tificial Neural Networks (ANN) to IRK research due to
their excellent nonlinear mapping attribute, potential fast
computational time under parallel computation mecha-
nisms, and optimization ability. Research has been done
in realizing the forward and inverse kinematics mapping of
robot manipulators with neural networks [26]. Mao and
Hsia [11] showed the effectiveness of the multilayer neural
network approach to solve the IRK problem. Ding et al.
[12] obtained the collision-free IRK solution using a Hop-
field network with a weighted form objective performance
function. Wang et al. [19] presented a Lagrange network
for the kinematic resolution without considering physical
limit constraints. Ding and Wang [20] proposed the use
of a recurrent form linear programming network, named
primal-dual ANN, to find the minimum infinity-norm so-
lution of redundant manipulators. The methods proposed
by Ding and Wang [20] and Wang et al. [19] can deal
with the case when the Jacobian is in or near singular
configuration. Zhang et al. [13] presented an improved
formulation under recurrent ANN strategy in the sense
that the OA requirement is represented with dynamically
updated inequality constraints. In order to reduce com-
putation complexity and to increase convergence rate, Xiaet al. [21, 22] proposed a novel recurrent form ANN for
solving the kinematic resolution problem while consider-
ing the physical limit constraints. The proposed neural
network has a one-layer structure and is not required for
computing the inverse matrix.

Among the kinds of requirements for utilization of the
dexterity of redundant robots, OA, SA, and joint motion
limits avoidance are the essential requirements for the re-
dundant robots to complete a task. In most of the re-
search work the essential requirements are formulated as
performance functions [8–10] that are then combined in a
weighed-sum function to resolve the IRK problem [3–7, 11,
12]. From the point of view of real-time applications, the
ANN-based methods, primarily the ones that use online
training for the recurrent network, are especially attrac-
tive for redundant robot control. However, using recurrent
neural networks for finding the solution of a class of opti-
mization problems with constraints, while guaranteeing at
all times the stability of the system, is an open research
area [20, 27–29, 30].

The weighted-sum method that was used in the case
of multi subtasks requirements [4–7, 11, 12, 20] have two
drawbacks: The first is the compromise between weighted
parts with different physical units in performance function
[8, 29, 31]. The weighted-more parts in performance
function become stronger and the other, weighted-less parts
become weaker. However, this does not mean that the
original term will be optimized as the weighted one. The
second drawback consists in the additional computational
burden to calculate, at every time sample, the inverse of
the Jacobian minor or the pseudoinverse of the Jacobian
matrix, the performance function and its derivatives [32].
Ho et al. have shown [23] that the LP method is a suitable
approach for controlling articulated systems with a large
number of DOFs and constraints for real-time applications,
as the LP method has a lower computation time than

the pseudoinverse method. Goldbach had given extensive
numerical results [32], which indicate that the QP method
is potentially more efficient than the LP method when
considering the same input and linear constraints.

The weighted quadratic performance function is su-
perior to the linear one with system dynamics–consistent
attribute. In this paper we construct the general form
of solution for the first-order IRK problem based on the
geometry analysis by making use of differential geome-
try tools. We propose a Velocity Projection Constraints
Method (VPCM) for OA and an On-line Task Modification
Method (OTMM) for SA. OA and SA requirements are
formulated as, respectively, dynamic inequality and equal-
ity constraints, which are incorporated in the standard QP
algorithm to resolve IRK problem. These constraints are
then combined with the joint motion limits in order to
model the feasible subspace of the configuration space of
the manipulator, such that the drawback of the penalty
method [29] will be avoided. At the same time, the method
avoids the compromise, complicated weight adjustment [3–
8], and noncommensurate, which was defined by Schwartzet al. [31] for blending different optimizing objectives with
different physical unit, factor of the weighed-sum method.
Numerical examples show the validity of our method.

In Section we present the general formulation of the
IRK in a differential geometry setting, when the joint
motion limits are modelled as linear inequality constraints.
Section 3 proposes intuitive geometry formulations to set
up the inequality constraints to define the OA subspace.
Section 4 gives the online singularity avoidance method.
Section 5 shows the simulation results for obstacle and
singularity avoidance when two planar manipulators are
considered. Conclusions are presented in Section 6.2. Generalized Formulation of the IRK Problem
In this section we give a fundamental basis for understand-
ing the differential transformations that are implicit in
solving the IRK problem. We adopt differential geometry
tools to find the general-form solution of the IRK problem
by making an analysis of the relationship between the tan-
gent and cotangent spaces of the configuration manifold
and the Jacobian matrix.2.1 Analysis and Formulation
For the linear attribute of the first-order kinematics map-
ping, the majority of efforts have been focused on find-
ing the solution of the redundancy at velocity level. The
kinematics of manipulators is frequently represented as:

x = f(q) (1)
ẋ = J(q) · q̇ (2)

where x∈Rn represents the task in Cartesian space,
f(q)∈Rn is a vector function expressing the forward kine-
matics relation, q ∈Rm(m>n) represents the joint vari-
ables in configuration space, and J(q)= [JT

1 · · ·JT
n ]T ∈

Rn×m is the end-effector Jacobian matrix, which consists
of joint twist respect to Cartesian space. Let N be the23



n-dimensional manifold, which defines the task in Carte-
sian space, and let M be the corresponding m-dimensional
manifold in the configuration space. We can then find
q ∈M and x∈N . Equation (2) expresses the mapping, f∗,
between the tangent space TMq ∈Rm located at point q on
the manifold M and the tangent space TNx ∈Rn located
at point x on manifoldN [33]. Let the vector field ẋ∈TNX

and q̇ ∈TMq be given by:

ẋ = x1 ∂

∂x1
+ · · ·+ xn ∂

∂xn
(3)

q̇ = q1
∂

∂q1
+ · · ·+ qm

∂

∂qm
(4)

where xi, i=1, 2, . . . , n, and qj , j=1, 2, . . . ,m, are the
coordinates of ẋ and q̇ in the canonical bases ∂/∂xi and,
respectively, ∂/∂qj . Associated with the tangent space
TMq is the dual space TM∗

q ∈Rm, also named cotangent
space, which is expressed with the set of linear functions
on TMq. The row vectors of J(q) span the subspace
Δr = span{J1 · · ·Jn}∈TM∗

q . We prove (see Appendix)
that Ji = f−1

∗ (∂/∂xi). Thus the geometric meaning of (2)
is that the ith coordinate of ẋ is the projection of the vector
q̇ on the vector Ji, which is the f∗ induced map f−1

∗ (∂/∂xi)
at point q. Assuming the dimension of Δr is rJ , where
rJ ≤n, we can find a set of linearly independent vector
fields Nt, {t = 1, . . . ,m− rJ}, which are independent to
Δr and span a subspace Δn ∈TM∗

q . The distribution
Δ= span{Δr +Δn}∈TM∗

q spans a dimension m space at
point q. We can construct the vector q̇ in space Δ∈Rm as:

q̇ = [J1, . . . , JrJ , N1, . . . , Nm−rJ ] ·λ = [JT
r Nq] ·

⎡
⎣ λa

λb

⎤
⎦ (5)

where λ∈Rm represents the coordinates of the vector
q̇ in the non-normalized affine coordinates frame (q,Δ);
λa is the coordinate vector of q̇ in the m-dimensional
subspace Δr, and λb is the coordinate vector of q̇ in the
m-dimensional subspace Δn. It is worth noting that Nt is
unnecessary orthogonal to the space Δr; however, there is
a premise that the vectors Nt must be linearly independent
to each other and to the row vectors of the Jacobian matrix
J(q).

Now solving the inverse kinematics of a redundant
robot reduces to finding the velocity vector q̇ in the space
TM∗

q under the condition that the coordinates λa of q̇
are invariant on the space Δr, namely, it satisfies the
end-effector velocity ẋ. Many additional objectives to be
achieved with a redundant manipulator can be expressed
in terms of minimizing a criterion function H [2–11, 16]. If
we assure −∇HT · q̇ > 0 by choosing properly the λb, the
corresponding solution q̇ will make H increase.2.2 Solution of the IRK Problem
Equation (5) gives the generalized solution for the first-
order IRK problem. The IRK solutions at velocity level
are particular forms of (5). Suppose Rank(J)=n and

λb =0(m−n)× 1; we can get the pseudoinverse solution by
setting λa =(JJT )−1ẋ. Similarly, any other velocity level
solution variants, such as solution with methods EJM [16],
GPM [17], LMM [18], and QP [4–7], can be formed by
selecting properly λ in (5).

The standard optimized solution under equality and
inequality constraints for the IRK at velocity level can be
given as:

Minimize H(λ) (6)

Subject to J · [JT
r Nq] · λ = ẋ (7)

A · λ ≤ B (8)

where H(λ)∈R is a performance function. Equation (7)
represents the relationship between the end-effector veloc-
ity and the joint velocity. The function H(λ) can be linear
or nonlinear form [3–13, 20–22]. Due to system dynamics
consistent attribute, the quadratic form performance func-
tion is preferred, such as H(λ)= 1/2λTWλ+ϕλ, where
W ∈Rm×m is a positive-definite cost matrix, and ϕ∈R1×m

is a linear cost vector. The joint motion constraints were
formulated as inequalities in (8). The authors of [4] intro-
duced the definition of joint range limit and joint velocity
limit; we modify it and add acceleration limits into the
constraints formulation.

Let ql(qu) denote the lower (upper) limits of joint
range and q̇l(q̇u) denote the lower (upper) joint velocity
limits of joint while q̈l(q̈u) represent the lower (upper)
joint acceleration limits. The available joint range, joint
velocity and joint acceleration can be converted to velocity
constraints as:

�ql − q(t)
Δt

≤ q̇(t) ≤ hqu − q(t)
Δt

(9)

βq̇l ≤ q̇(t) ≤ βq̇u (10)

q̇(t−Δt) + Δt · γq̈l ≤ q̇(t) ≤ q̇(t−Δt) + Δt · γq̈u (11)

where �= diog[�1, . . . , �m], h= diog[h1, . . . , hm], β= diag
[β1, . . . , βm], γ= diag[γ1, . . . , γm], 0<�i ≤ 1, 0<hi ≤ 1,
0<βi ≤ 1, 0<γi ≤ 1. The joint torque limits consideration
can be realized by adjusting γ and replacing q̈l(q̈u) with
the online minimum (maximum) acceleration output under
the joint torque limits. We can combine (9), (10), and (11)
to a matrix form as (8); then A and B have the form:

A =

⎡
⎣−Im

Im

⎤
⎦
2m×m

·
⎡
⎣ Jr

NT
q

⎤
⎦
T

(12)

B =

⎡
⎢⎢⎢⎢⎣
−max

(
�ql − q(t)

Δt
, βq̇l, q̇(t−Δt) + Δt · γq̈l

)

min
(
hqu − q(t)

Δt
, βq̇u, q̇(t−Δt) + Δt · γq̈u

)
⎤
⎥⎥⎥⎥⎦
2m×1

(13)24



In the case in which several performance functions need
to be optimized, the weighted-sum method is the usual
way to combine them [34]. However, it is very possible
that the terms that are weighted more will not be better
satisfied than the terms that are weighted less in the en-
tire weighted sum [29]. The noncommensurate [31], which
exists in blending different optimizing objectives with dif-
ferent physical unit, compromise, and conflict [8] between
performance functions, makes the weight adjustment a
difficult issue [6, 29].

Many subtasks will determine limits to the joint con-
figuration space. However, as long as the limits are not
violated and there are no conflicts with the joint motion
limits, the requirement of subtasks (e.g., OA, SA, and joint
range availability) are satisfied.3. Obstacle Avoidance Constraint
The controller of the manipulator must properly avoid
the obstacles presented in the environment in order to
prevent possible damage to the manipulator. The location
of the obstacle can be determined from the information
regarding the distance between the obstacle objects and
the links of the manipulator. But arbitrary and complex
shapes of obstacle objects make the minimum distance
detection between the boundary hulls of obstacles and the
manipulator links highly computation consuming. Simple
boundary hulls, such as cube, sphere, and column, which
envelope the obstacle and links’ boundary, can decrease the
proximity checking computation burden. In this work, we
adopted spherical and column bounding boxes as envelopes
for the obstacle and manipulator links’ boundary. We
also simplify the minimum distance checking problem as
checking the shortest distance between a point and a line
segment. Excepting in the situation showed in Fig. 1(a),
the critical point for possible collision, denoted by C, is
located only at the joint of the manipulator; Figs. 1(b)
and (c) show the situation. A similar example has been
given in Zhang et al. [13].
Figure 1. Location of critical point C according to three
possible situations for obstacle point and the link LAB .

Let PA and PB represent the joint A and B; O repre-
sents the obstacle point; the vector �VAB corresponding to
the link LAB will be:

�VAB = [v1 v2 v3]T = −−−→
PAPB (14)

The point OC can be easily located by solving the
system of equations:

(15)
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

v1(x−Ox) + v2(y −Oy) + vz(z −Oz) = 0
x− PAx

v1
= y − PAy

v2
= z − PAz

v3

The three cases presented in Fig. 1 can be distinguished by
using the following pseudocode:If OCx ∈ [PAx, PBx], then case (a)Else if ‖−−−−→OCPA‖2 ≤‖−−−−→OCPB‖2, then case (b)Else case (c)End

In [19] the inequality constraints limit stringently the
solution space, because only the sign of vector −−−→

OOC was
used to formulate the constraints for the velocity of the
critical point on the manipulator link. In order to reduce
the nonessential limit on the available solution space, pro-
jection of critical point velocity on the vector −−−→OOC will be
used to set up the geometry intuitive constraints. The unit
vector −−−→OOC is given as:

roc = [XOC
−XO YOC

− YO ZOC
− ZO]T /‖−−−→OOC‖ (16)

In the case in which the distance, d, from the obstacle
to the manipulator link is less than the safety margin,
dS , we must adopt obstacle avoidance measure in order to
eliminate possible damage to the manipulator. Considering
the relation between the critical point velocity and the
vector roc, we determine that the critical point will escape
the possible collision zone when the projection value of the
critical point velocity on roc, P , is positive. Thus, the
obstacle avoidance inequality constraints can be formulated
as:

P = rToc · (JO · q̇ − vo) ≥ 0 (17)

where JO is the Jacobian matrix with the critical point
OC as velocity reference point; vo ∈R3 is the velocity of
the nearest obstacle point. We can find that a disconti-
nuity in the joint velocity will occur when P < 0 and the
constraint (17) was suddenly applied into (8). Therefore,
the smoothing measure P ≥ t must be adopted to avoid the
discontinuity. We define t as:

t =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

P dS + σ1 < d ≤ dS + σ2

ρ(d) · PC dS < d ≤ dS + σ1

0 d ≤ dS

(18)

where ρ(d)∈ [0, 1] is a bell shape function, σ1 ∈R+, σ2 ∈R+

are the buffer distance, and σ1 <σ2, PC = {P |d(q, t)= dS +
σ1}. When d>dS +σ2, the constraint described by (18)
is not considered to alleviate the computation burden. If
there are s obstacle points that need to be considered, and
the manipulator has enough dexterity or redundant DOF,
we can formulate the s OA constraints as:

rToic(JOi q̇ − voi) ≥ ti, i = 1, . . . , s (19)25



The matrices A and B can be extended by combining
(12), (13), (18), and (19).

The above-presented process formulates the OA re-
quirements as feasible range of joint velocities by setting
up the critical Velocity Projection Constraints Method
(VPCM). However, there are cases in which the constraints
are over-stringent, and this means that the constraints (7)
or (8) must be broken in order first to fulfill the safety
consideration and then to perform the task. In these cases
there must be applied high-level task-planning algorithms
for the purpose of performing the task and at the same time
satisfying the physical limits and safety requirements. It is
also well known that infeasible solutions may be obtained
when the end-effector moves close to a singularity [1, 4,
8, 16, 24]. In the following section, we present a general
SA method. A comparison with the well-known damped
least-squares method [35] will also be given.4. Singularity Avoidance Consideration
For nonredundant manipulators, singularity-free motion
can be achieved with offline path planning. However, it
is required to have a priori knowledge of all the singu-
lar configurations of the manipulator. For a redundant
manipulator, self-motion can realize the avoidance of es-
capable singularities, but this cannot be achieved for the
case of inescapable singularities [36, 37]. A similar method
to avoid the obstacle collision configuration can be used
to avoid the escapable singularities by self-motion based
on the knowledge of all the singular configurations of the
manipulator. Let the escapable singularity configurations
be expressed as qes; we can avoid the escapable singular-
ity configurations by steering the joint velocity with con-
straints (q(t)− qes) · q̇≥ 0. When the desired direction of
the end-effector motion locates in the range space of the
singular Jacobian matrix, the method of solving the IRK
problem presented in Section 2 will always compute a sat-
isfying solution. However, the desired time increment mo-
tion ẋ(t)= (xd(t+Δt)−x(t))/Δt will often produce devi-
ation in the range space of the singular Jacobian matrix,
and this will result in failure in accomplishing the trajec-
tory following task. An online SA method will avoid that
problem and reduce the burden of checking if the singular
configuration can be avoided by self-motion. This is due
to the fact that the singularities can be directly identified
based on the singular values of the Jacobian matrix. The
singular value decomposition of the Jacobian matrix is
given by:

J = U
∑

V T (20)

where U = [u1, u2, . . . , um] and V = [v1, v2, . . . , vn] are
orthogonal matrices and

∑
= [diag(σ1, σ2, . . . , σm)|0],

(m<n) is a m×n matrix whose diagonal elements are the
ordered singular values of J .

A singular direction vector, uS , in the workspace is
identified from the fact that its corresponding singular
value is zero; the vector uS can then be used to modify the
velocity of the end-effector to avoid the singularity. This
modification method is formulated as:

ẋR = ẋ− k(1− p(σmin))(uT
S ẋ)uS , k =

⎧⎨
⎩ 0 σmin > σS

1 σmin ≤ σS

(21)

where ẋR is the revised end-effector velocity; σmin ∈R is
the minimum singular value of the manipulator Jacobian
matrix; σS is the low bound for allowable singular values;
and p(σmin)∈ [0, 1] is an monotone decreasing function.
The above formulation realizes SA by online modifying
the task velocity of the end-effector, and is named On-
line Task Modification Method (OTMM). OTMM is not
only effective for redundant manipulators but also for
nonredundant manipulators.

The damped least-squares method [35] is often used to
get the singularity robust solution and is defined as:

q̇ = JT (JJT + μI)−1ẋ (22)

where μ> 0. Now using the matrix formula (C +D)−1 =
C−1(I − (C−1 +D−1)−1C−1) (where C ∈Rn×n and D∈
Rn×n), we can find that the equation (22) revises the
velocity of the end-effector such that the singularity will
be avoided. However, (22) requires the computation of the
matrix inverse and thus has higher computation burden
than (21). At the same time, (21) is more intuitive
and easier to incorporate into the IRK resolution method
presented in Section 2.

We formulated the OA and SA requirements as, re-
spectively, inequality and equality constraints with VPCM
and OTMM. These constraints were incorporated in the
standard QP algorithm to avoid the compromise, compli-
cated weight adjustment, and noncommensurate factor in
weighed sum method [3–8, 31].5. Simulation Examples
Two simulation examples are given in this section in order
to demonstrate the effectiveness of the presented meth-
ods. Matlab was used to implement the control algorithm
and perform the numerical simulation for the robotic arm
movement.

The first simulation example considers a four-
link planar manipulator following a circular trajectory
while avoiding a moving circular obstacle with ra-
dius 0.1m. The parameters of the manipulator and
its initial states are [l1, l2, l3, l4] = [1, 0.8, 0.8, 0.6] m,
[q1, q2, q3, q4] = [−1.2763, 1.1927, 0.7517, 0.4086] rad. The
physical limits of the manipulator are defined as qu =
−ql = [3, 3, 3, 3]T rad, q̇u =−q̇l = [0.9, 1, 1.2, 1.5]T rad/s,
and q̈u =−q̈l = [6, 7, 8, 9]T rad/s2. The desired path of
the end-effector is a circle with radius 0.6m and centre
(1.8, 0), which must be tracked in a counter-clockwise
movement within 12 seconds. The centre of the obstacle
moves from point (3.1, −0.65) to point (0.7, −0.65) at
even speed 0.175m/s. The other parameters are ds =0.2,
σ1 =0.2, and σs =0.05. The function p(σmin) has form
p(σmin)= 3

√
σmin/σs.

Fig. 2 shows the simulation results for minimum 2-
norm of the joint velocity without obstacle and singularity26



Figure 2. Simulation results for optimized minimum 2-norm of joint velocity without OA and SA consideration for four-link
planar manipulator.

Figure 3. Simulation results for optimized minimum 2-norm of joint velocity with obstacle and singularity avoidance
consideration for four-link planar manipulator.

avoidance consideration. One can see that there exists
chattering and the joint velocity leap when the manipulator
moves to a singularity. Also, it results in collision between
the dynamic obstacle and manipulator link. Fig. 3 shows
the simulation results for minimum 2-norm of the joint
velocity when OA and SA are described as constraints.
Fig. 3(a) shows that the QP method with OA constraints
is successful in avoiding the dynamic obstacle. Figs. 3(c)
and (d) show that smooth joint velocity and only small
errors result while passing through the singularity.

The second simulation example is a six-link pla-
nar manipulator following a line trajectory while avoid-
ing a point and triangular obstacles within 12 sec-
onds. The parameters of the manipulator and its
initial states are [l1, l2, l3, l4, l5, l6] = [1, 1, 1, 1, 1, 1]m,
[q1, q2, q3, q4, q5, q6] = [0, 0, 0, 0, 0, 0] rad. The physical lim-
its of the manipulator are defined as qu =−ql = [3, 3,
3, 3, 3, 3]T rad, q̇u =−q̇l = [0.8, 1, 1.2, 1.2, 1.5, 1.8]T rad/s,
and q̈u =−q̈l = [6, 6, 8, 10, 12, 12]T rad/s2. The line tra-
jectory is from point (6, 0) to point (0, −3) with bell27



Figure 4. Simulation results for optimized minimum 2-norm of joint velocity with obstacle and singularity avoidance
consideration for six-link planar manipulator.

shape acceleration law. The other parameters are ds =0.2,
σ1 =0.2, and σs =0.06.

Fig. 4 shows the simulation results for the minimum 2-
norm of joint velocity with obstacle and singularity avoid-
ance constraints for the six-link manipulator. The initial
configuration of the manipulator is at a singularity. The
task velocity is dependant on the column vectors of the
Jacobian matrix at initial configuration; therefore no feasi-
ble solution can be found at that point. In our algorithm,
this problem is resolved by OTMM given by equation (21).
The point and triangular obstacles are successfully avoided
with VPCM.

The two examples are implemented in Matlab R14
environment on a PC with a 2.4GHz Pentium 4CPU
and 512M RAM. The average computation cycle time is,
respectively, 31.25ms and 36.16ms for the two simulation
examples.6. Conclusion
In this work, the general-form solution of the IRK problem
was given by means of differential geometry tools. OA,
SA, and joint motion limits avoidance are the essential
requirements for the redundant robots to complete a task.
In order to avoid the compromise, complicated weight
adjustment, and noncommensurate factor in weighed-sum
method while realizing the OA and SA subgoals for the IRK
problem, we proposed VPCM and OTMM to construct OA
as inequality constraints and SA as equality constraints.
These constraints were incorporated into QP method, and

the IRK problem was solved successfully. The proposed
online singularity avoidance method, OTMM, is not only
suitable for the control of redundant manipulators but can
be also applied for nonredundant manipulators. When
applied to redundant manipulators, the method alleviates
the burden of checking the nature of the singularity points.
Two simulation results were presented to demonstrate the
validity of the proposed method.Appendix
For any point q ∈M and x∈N , the map relation between
∂/∂qi and ∂/∂xj [33, p. 18] is:

f∗

(
∂

∂qi

)
=

n∑
β=1

(
∂fβ

∂qi

)
∂

∂xβ
(23)

Thus, the ith column of Jacobian matrix J(q) rep-
resents the components of the map of ∂/∂qi in TNX

on the canonical basis of TNX . dqi, i∈ (1, 2, . . . ,m) and
dxj , j ∈ (1, 2, . . . , l) are the canonical bases of the cotan-
gent spaces TM∗

q and TN∗
X , which are dual space of, re-

spectively, TMq and TNX . Considering the bilinear map
〈·, ·〉 : TN ×TN∗ →R, we denote:〈

∂

∂xβ
, dxβ

〉
=

〈
∂

∂xβ
, d(xβ ◦ f)

〉

=
〈

∂

∂xβ
,

n∑
i=1

∂fβ

∂qi
dqi

〉28



=
n∑

i=1

〈
∂

∂xβ
, dqi

〉
∂fβ

∂qi

=
n∑

i=1

〈
∂

∂qi
, dxβ

〉
∂fβ

∂qi
(24)

=
〈

n∑
i=1

∂fβ

∂qi

∂

∂qi
, dxβ

〉

Therefore, we obtain f−1
∗ (∂/∂xβ)=

n∑
i=1

(∂fβ/∂qi)

(∂/∂qi). This equation expresses the fact that the β-th
row of Jacobian matrix J(q) consists of the components
of the inverse map of ∂/∂xβ in the canonical basis ∂/∂qi.
One can now express the β-th component of ẋ∈TNX as:

xβ =
〈

n∑
i=1

∂fβ

∂qi

∂

∂qi
, q̇

〉
= rowβ(J(q)) • q̇ (25)Acknowledgment
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