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The proposed self-adaptive predictive pursuing policy consists of an action deci-

sion-making procedure and a procedure of adjusting the estimation of evader’s action 
preference. Since correct estimation of opponent’s intention would do good to win ad-
versarial games, it introduces the conception of action preference to model opponent’s 
decision-making. Because evader often has different action preference in different situa-
tion, to model evader’s decision-making, pursuer has to divide the situation space into 
many categories and provide a set of estimation of evader’s action preference for each 
kind of situation. Pursuer adjusts the estimation of evader’s action preference in certain 
situation by observing evader’s action. Action decision-making procedure consists of 
situation sorting, possible future states computation, payoff evaluation and action selec-
tion. Action decision-making is based on the decision tree constructed by expected pay-
offs. Expected payoffs are integrated from single payoffs. Single payoffs are evaluated 
by gains of features reflecting adversarial situation. A simulation of middle size soccer 
robots has been carried out and illustrated that the proposed policy is effective.   
 Keywords: action preference, payoff function, predictive, pursuit-evasion games, self-  
adaptive 
 
 

1. INTRODUCTION 
 

Pursuit-evasion games are important issues. There are many types of pursuit-eva-  
sion games, for examples visibility-based pursuit-evasion game [1], the game of multi- 
pursuers capturing one evader [2], pursuit-evasion game with safety-zone [3, 4], etc. It 
can also be considered that the RoboCup Soccer Robot game is constituted with some 
pursuit-evasion scenarios. The scenario of a robot team intercepting an opponent drib-
bling is a typical pursuit-evasion game with safety-zone. Today, RoboCup is a popular 
game to foster intelligent robotics research by providing a standard problem [5]. 

Correct speculation of opponent’s intention is a key to win an adversarial game. To 
estimate opponents’ intention, some researchers assumed that game players are rational 
[6, 7]. In such works, the assumption “I KNOW THAT HE KNOWS THAT I KNOW” is 
granted by the game players. But in many adversarial games, especially today’s adver-
sarial games of robot, players are often short of information of their opponents. For ex-
ample, in the typical pursuit-evasion game of missile interception problem [3, 4], evader 
is often thought as blind, i.e. it is impossible that players of this kind game are rational. 
As the state-of-the-art of RoboCup soccer robot, “rational” assumption is not always in 
accord with the fact of soccer robots. For examples, robots of EIGEN MSL team 2006 
use Fuzzy Potential Method (FPM) to generate action [8], robots of Philips MSL Team 
2006 are reactive [9] and they could not be rational. In fact, even when professional hu-
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man athletes play adversarial games requiring quick decision-making, such as basketball 
game, they are often not “rational” and trained to follow “if X, then execute action Y” 
rules.  

To antagonize with “irrational” opponents, a short-term prediction based pursuing 
policy for pursuit-evasion games is proposed in [10]. If it is possible, it is useful to pre-
dict other’s action [11]. The policy proposed in [10] supposes that player assumes that 
the probability of the opponent executing each action is equal. The opponent’s preference 
for certain action in certain situation is ignored. In real world, agent often follows some 
given action decision-making rules, i.e., there is a known or potential mapping relation-
ship between situations and actions. For example, robots with reactive intelligent system 
architecture [12-14] have action preference for each situation. 

Obviously, to beat the opponent with action preference, it is helpful to take the ac-
tion preference of opponent into account. Thus, a self-adaptive predictive pursuing policy 
is presented. The self-adaptation of it is realized by modifying the estimation of oppo-
nents’ action preferences in different situations. 

The presented self-adaptive method is not same with reinforcement learning. The 
conception of reinforcement learning is first suggested by Minsky [15]. The basic idea of 
reinforcement learning is as follows: if an action leads to positive reward, then the possi-
bility of the agent executing the action will be increased; otherwise, if an action leads to 
negative reward, then the possibility of executing the action would be decreased.  As 
the paper [16] said, a drawback of reinforcement learning is that the learning procedure 
would be long. On the contrary, the estimation of opponent’s action preference in certain 
situation can be adjusted quickly. For many adversarial games, such as soccer game, it is 
not a good idea to use the “try and adjust” procedure of reinforcement learning (although 
reinforcement learning is useful in training soccer robot). Furthermore, in many adver-
sarial games, situation is not so simple as the event of shooting/defending in most time. It 
is a problem to design a perfect reward evaluation. On the other hand, if situations can be 
evaluated perfectly, why not use the method that decision is made by evaluating the re-
sult of actions directly? With the presented method, designer can focus on how to im-
prove the reward evaluation. 

For the great maneuverability of intelligent players in many games, their possible 
state spaces of long-term running would be extremely huge. So in such games, it is often 
impractical to do long-term prediction before selecting an action to execute. Further-
more, it is difficult to work out a non-greedy GLOBAL-MAX solution in such pursuit- 
evasion games. Thus, the presented method only uses short-term information for decision- 
making. 

The basic action decision-making procedure is described in section 2. Section 3 ex-
patiates on the method of action preference estimation. A simulation is presented in sec-
tion 4. Section 5 concludes. 

2. ACTION DECISION-MAKING PROCEDURE 

In practice, it is difficult to work out an optimal action solution in pursuit-evasion 
games with intelligent and highly maneuverable opponents. Player often has to execute 
an action that seems to be reasonable. Thus, it is reasonable to assume that an agent P has 
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a discrete and finite action space and it justly selects a “rational” action within the limited 
action space to execute. In fact, for many real systems, their actions or controls are re-
stricted to be a limited number of classes. For example, in several versions of middle size 
soccer robot intelligent system developed by us, there are only several levels of power in 
use. Thus, if W is the action space of P, W = {wi | i = 1, …, N}, where wi denotes action i 
and N is the number of actions, then the result of P’s decision-making is that it selects 
one action wj (or action sequence) to execute. 

For the proposed predictive policy, the selected action wj should lead to a “maxi-
mal” reward or “minimal” payoff for certain future. Payoff (or reward) is used to indicate 
the vantage grade of players in an adversarial situation. Since an agent usually does not 
know whether its opponent is rational or not, it is reasonable to use the aggregate values 
of payoffs at some future time to make action decision. Here, the aggregate value of pay-
off is called as expected payoff. Expected payoff is integrated with single payoff. Single 
payoff can be defined as “in current situation (player P is in state s0 and its opponent E is 
in state s′0,), the payoff J(s0, s′0, wi, uj, t) of a player P executing action wi with time t 
against its opponent E executing action uj”. Thus, after time t, expected payoff E[J(s0, s′0, 
wi, u, t)] of a player P executing action wi in current situation satisfies the following 
equation: 

0 0 0 0[ ( , , , , )] ( ) ( , , , , ) ,i i
U

E J s s w u t p u J s s w u t du′ ′= ∫     (1) 

where U is the action space of player E, p(u) is the probability of E executing action u in 
the situation (constituted by P state s0 and E state s′0). It satisfies the equation: 

( ) 1.
U

p u du =∫     (2) 

Definition 1  The probability or probability density p(u) of an agent executing an action 
u in certain situation is the action preference of the agent executing u in that situation. In 
this paper, the action preference p(u) is P’s subjective estimation of the probability of E 
executing action u.  
 

The payoff is evaluated with the result of executing certain actions, i.e. it is evalu-
ated by evaluated the situation as result of executing certain actions. If in current situa-
tion, P will be in state Sit by executing action wi with time t and E will be in sate S′ut by 
executing action u with time t, then  

0 0( , , , , ) ( , ).i it utJ s s w u t s sψ′ ′=     (3) 

Thus, Eq. (1) can be rewritten as follows: 

0 0[ ( , , , , )] ( ) ( , ) .i it ut
U

E J s s w u t p u s s duψ′ ′= ∫     (4) 

According to Eq. (4), to evaluate its expected payoff of executing each kind action 
with time t in current situation, a player needs to know the action preference of its oppo-
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nent and the future states of players. Because a player usually has different action pref-
erence in different situations, it needs estimate the type ofr the current situation firstly. 
Thus, the proposed action decision-making procedure consists of current situation sorting, 
possible short-term future states computation for all players, payoff evaluation and action 
selection, as shown in Fig. 1.  

 Possible future 
states computation 

Situation sorting 

Payoff 
evaluation

Action 
selection 

Tree of 
states Decision 

tree 

 
Fig. 1. Basic decision-making procedure. 

 
2.1 Payoff Evaluation and Decision-making 

Payoff evaluation procedure is divided into two steps: at first, evaluates single pay-
off; then integrates single payoffs into expected payoffs. Action decision is made based 
on a decision tree constructed from expected payoffs. 

2.1.1 Single payoff evaluation 

In pursuit-evasion games, single payoff is often scaled with the distance among 
game players. For many adversarial pursuit-evasion games, the vantage of situation is not 
only reflected by the parameters of distance. With the conception of feature that reflects 
profile of the situation vantage, a single payoff evaluation method is proposed as follows:  
 
(1)  At first, works out values of features those reflect the situation constituted by P state 

sit against E state s′ut;  
(2)  Evaluates each feature respectively;  
(3)  Integrates gains of all features into a single payoff.  

For pursuit-evasion games with safety-zone, such as typical scenario of intercepting 
a robot E dribbling in middle size soccer robots game, several features could be extracted: 
the distance between P and E at that moment, the distance between P and the possible 
shooting line of E, the related approaching speed between P and E, etc.  

Payoff function used to evaluate certain feature can be designed based on experi-
ence knowledge and adjusted by experiments. For example, in soccer robots game, it is 
shown with experience knowledge that the shorter the distance between P and the possi-
ble shooting line of E is, the safer P is. So the payoff function of feature “the distance 
between P and the possible shooting line of E” can be in following form: 

f = e-d/k (5) 

where d is the distance and k is a positive tunable constant. 
Assuming that feature payoff functions are f1, f2, …, fn respectively, the single pay-

off function of P state sit against E state s′ut can be a linear weighted sum: 
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0 0
1

( , , , , ) ( , )
n

i it ut j j
j

J s s w u t s s fψ α
=

′ ′= = ∑  (6) 

where αj is the weight coefficient. 
 
2.1.2 Expected payoff evaluation 

 
As Eq. (4) shown in the above, the expected payoff E[J(s0, s′0, wi, u, t)] of a player P 

executing action wi in current situation can be evaluated. Since in adversarial game, play-
ers usually cannot know their opponents’ actions in detail and they usually can only gain 
an estimation of their opponents’ action space bound values. Thus it is not bad for a 
player P to assume its opponent has a continuous action space. It means that the payoff 
evaluation method as Eq. (4) is reasonable.  

But it is difficult to compute expected payoff E[J(s0, s′0, wi, u, t)] with Eq. (4) di-
rectly. Thus, approximately evaluation method is needed. According to the principle of 
Quasi-Monte Carlo, the whole characteristic of something can be reflected approximately 
by integrating characteristics of evenly distributed sample points. Since the expected 
payoff E[J(s0, s′0, wi, u, t)] of P executing action wi in some situation is a function of u as 
Eq. (4), P can select evenly distributed “virtual” actions u of E to evaluate E[J(s0, s′0, wi, 
u, t)] approximately. For example, select angular velocities ± jωemax/m as values of E’s 
2m + 1 actions uj, where j = 0, 1, …, m. Thus, the expected payoff of P executing action 
wi in the situation can be evaluated approximately as follows: 

2 1

0 0 0 0
1

[ ( , , , , )] ( , , , , ) ( )
m

i i j j
j

E J s s w u t J s s w u t p u
+

=

′ ′≅ ∑  (7) 

where p(uj) is the estimated action preference of E executing action uj in the situation. 
After all expected payoffs have been evaluated, P establishes a decision tree shown 

as Fig. 2, supposing that P has n choices of actions. In Fig. 2, 1, …, k0 represent the in-
dexes of predicting step. 

Based on the decision tree, P determines which action to execute in next time. 

n

n n
n n

1:

k0:

)],,,,([ 1
'
00 TuwssJE )],,,,([ '

00 TuwssJE n

)],,,,([ 0
'
00 TkuwssJE x )],,,,([ 0

'
00 TkuwssJE z  

Fig. 2. Decision tree of P. 

 
2.2 States Predicting 

As mentioned in the above, payoff evaluation is based on the predicted situations; 
the policy executer P should work out possible future states of all players. 
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P can do multiple steps predicting. Here, a single predicting step is corresponding to 
time T: for P calculating future states of a game player, it is assumed that the game 
player executes certain action continuously with time T. If P has worked out all possible 
states of all players at time T, P finishes the first step prediction; if P has worked out all 
possible states of all players at time 2T, P finishes the second step predicting; …. In gen-
eral terms, if P has worked out all possible states of all players at time T, 2T, …, nT, P 
finishes n steps prediction. 

P predicts its own future states as follows: with current state s0, it calculates the fu-
ture state siT as the result of executing action wi with time T. After it obtaining all possi-
ble states at time T, it finishes the first step prediction of itself. Similarly, at the second 
prediction step, it works out all possible states at time 2T with the states predicted at the 
first step. In the same way, P can finish n steps prediction. 

The procedure of P predicting E’s future states is similar with predicting its own 
future states. The difference is that: when P predicts its own states, it uses real executed 
actions; when P predicts E’s future states, it is based on the “virtual” selected actions that 
are evenly distributed in E’s “virtual” continuous action space. 

The time of each prediction step should not be too long. Obviously, if it is too long, 
it will lead to insufferable error for decision-making. For example, there may exist two 
actions A and B, at time T, executing A seems to be better than executing B; but at some 
time in (0, T), executing A means lose and executing B means win. 

On the other hand, the time T of each prediction step should not be too short either. 
As the work shown in [10], it is better to let the total prediction time length reach some 
value to gain a reasonable decision. Thus, to achieve a reasonable decision, the less the 
time of each prediction step is, the bigger the prediction step number will be. With a big 
prediction steps number, the computation complexity will be enormous. The computing 
complexity may affect the capability to react in real-time. The computing complexity can 
be estimated with the times of computing single payoff.  

Suppose that P has n kinds of actions and P assumes that E has m kinds of actions,  

then after k prediction steps, the predicted states number of P and E are 
1

k
i

i
n

=
∑  and 

1

k
i

i
m

=
∑  

respectively, the number of calculating single payoffs is 
1

k
i i

i
n m

=
∑ .  

Thus, the growth of prediction step number leads to great increasing of computing 
complexity. For example, if n = m = 10, increasing one prediction step would lead to 100 
times augment of computing complexity; if the prediction step number k = 5, it takes 
more than 5s to calculating single payoffs using a 2GHz computer; on the contrary, if k = 
3, the time used is about 1 ms quantity. 

The time of each prediction step can be determined according to the maneuverabil-
ity of players. 

3. ACTION PREFERENCE ESTIMATION 

A game player usually executes different actions in different situations, i.e. there are 
different types of action preference of the player for different situations. Thus, situation 
should be divided into many categories according to some standards. P has to estimate 
action preferences of E for all kinds of situations. In essence, the procedure of estimating 
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player E’s action preferences is a procedure of modeling E’s decision-making.  
Obviously, it is ideal for player P that P divides the situation space in the same way 

as E does. But it is impractical since P usually doesn’t know how E divides its situation 
space. If P wants to capture E’s intention correctly, size of situations in P should be less 
than that in E. On the other hand, P is usually unable to know the size of situations in E. 
In order to achieve the best estimation, what P can do is to divide the situation space into 
as many classes as possible with the limitation of computing complexity and the re-
quirements for real-time decision-making. 

The estimation of a player’s action preference in certain situation is self-adaptive. In 
each decision-making cycle, the estimation of E’s action preference is adjusted. As 
pointed in Definition 1, the estimation of E’s action preference in certain situation is de-
fined as the estimation of the probability of E executing each kind of action. According 
to the principles of probability, the probability of event ui can be approximately esti-
mated as follows: 

1
( )

n

i i j
j

p u x x
=

≈ ∑ , (8) 

where xj is the occurrence count of event uj, n is the total event number of the sample 
space. Thus, E’s action preference in certain situation can be estimated by counting exe-
cuted times of each action in the situation.  

Initially, P may supposes that the probability of E executing each action is equal, i.e. 
the initial executed times of all actions are set to be equal. If xmi is the executed times of 
E executing action ui in certain situation m, then initially, all xmi are set to be c0, where c0 
is a non-negative constant.   

In each decision-making cycle, P estimates the parameters of action that E executed 
and selects the “virtual” action ui, that is the least difference with the estimated parame-
ters, as the observed action. Then, P adjusts the executed times xmi of the “virtual” action 
ui for the last situation m as follows: 

xmi + c → xmi, (9) 

where c is a constant, such as 1. Finally, recalculate action preference of E in the situa-
tion m: 

1
( ) .

n

m i mi mj
j

p u x x
=

= ∑  (10) 

4. SIMULATION 

A simulation is carried out based on the practice of the autonomous soccer robots 
game. In order to illustrate the policy more explicitly, it uses One VS One intercepting 
scenario: agent P is responsible for intercepting the football dribbled or shot by E. For 
convenience, “E” is used to denote the robot dribbling the football or the shot football: if 
the football is shot, E is the football; otherwise, E is the robot dribbling the football.  

The victory criterion of E is that the ball is sent into the goal. The victory criterion  
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(a) The first time simulation result.            (b) The fifth time simulation result. 

Fig. 3. Simulation results. 

 
of P is that one of following events happens: (a) P enter into a zone with size 0.5m × 
0.6m in front of E; (b) The football is out of the field. 

In the simulation, the field size is 10m × 5m. The goal (safety-zone of E) is located 
at (10m, 1.5m-3.5m). P’s linear velocity is 1.5m/s and maximum angular velocity is 2 
rad/s. E’s linear velocity is 1.5m/s and maximum angular velocity is 1 rad/s. The initial 
velocity of football shot by robot is 5m/s, and its acceleration is – 2m/s2. The system in-
struction cycles of P and E are both 0.1s. The horizontal orientation to goal side is 0rad 
as shown in Fig. 3. 

E’s policy is as follows: if the shooting condition is satisfied, then it shoots the 
football; otherwise, it tries to dribble the football to goal; if P appears at certain position 
in front of it, it turns around to avoid P; E does not predict.  

In the simulation of P using the proposed self-adaptive predictive pursuing policy, it 
divides the adversarial situation into 108 categories:  
 
(1) According to the X coordination of E, it is divided into 4 types: x ≤ 5m, 5m < x ≤ 

6.5m, 6.5m < x ≤ 8m and x > 8m;  
(2) According to the Y coordination of E, it is divided into 3 types: y < 1.5m, 1.5m ≤ y < 

3.5m and y ≥ 3.5m;  
(3) According to the relative position between P and E, it is divided into 9 types:  

(a)  The distance between P and E is greater than 4m;  
(b)  The distance between P and E is greater than 2m and not greater than 4m. Ac-

cording to the angle α between the orientation of E and the line between P and E, 
it is divided into 4 types furthermore: π/6 ≤ α < π/2, π/2 ≤ α ≤ 3π/2, 3π/2 ≤ α ≤ 
11π/6 and otherwise;  

(c)  The distance between P and E is not greater than 2m. According to the angle α 
between the orientation of E and the line between P and E, it is divided into 4 
types furthermore: π/6 ≤ α <π/2, π/2 ≤ α ≤ 3π/2, 3π/2 ≤ α ≤ 11π/6 and otherwise. 

 
In the simulation, P just uses 2 features to evaluate single payoff. The single payoff 

function of P executing action wi against E executing certain action uj is as follows:  

1 2/10 /10
0 0( , , , , ) ( , ) 0.5 0.5d d

i j it jtJ s s w u t s s e eψ − −′ ′= = +     (11) 
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where d1 is the distance from P to the intercepting point; d2 is the distance from P to pos-
sible shooting line of E. Note: The single payoff function of P executing action wi has 
not been optimized. The unit of distance in above equations is “m”. 

In the simulation, the initial coordination of P is (7.5m, 2.5m, 3.142 rad). The time 
of each prediction step is 1s. P does one-step prediction. P has 11 actions and assumes 
that E has 11 actions. The initial position of E is (5m, 2.5m) and its start angle varies.  

For the proposed self-adaptive predictive pursuing policy, it carries on 50 times 
simulation in each initial condition (including players’ initial positions, orientations):  
 
(1)  Initially, P assumes that the action preference of E is equal and adjusts the estima-

tion of E’s action preference during simulation; 
(2)  With the same initial condition as the first time simulation and P’s adjusted estima-

tion of E’s action preference as the result of last time simulation, the second time 
simulation is carried out and P adjusts the E’s action preference estimation further-
more;  

(3)  In the same way, fifty times of simulations are carried out.  
 

As a contrast, in the same initial conditions, with the assumption that E’s action 
preference is equal; a simulation of short-term predictive pursuing policy is carried out. 
The simulation result is shown in Table 1.  

Table 1. Result of simulation. 
E’s start 

angle 
Self-adaptive pursuing policy Equal action preference 

assumption 
0 Win all Win 

0.2 Win all Win 
0.4 Win all Win 
0.6 Win the first 2 times Win 
0.8 Win the times of 1st, 2nd and 4th Win 
0.9 Win the first 6 times, and the times of 8th, 9th and 10th Win 
1.0 Win all Lose 
1.05 Win all Lose 
1.15 Win the first 18 times Lose 
1.25 Win the times of from 2nd to 7th and 15th to 50th Lose 

 
Result of Simulation:  
 

(1)  Using the self-adaptive predictive pursuing policy, it is possible that P improve the 
effect of pursuing. A simulation result with E’s original position (1m, 3m) and start 
angle 0 rad is shown in Fig. 3. 

(2)  The proposed policy is effective as illustrated in Table 1, where “Win” or “Lose” is 
about P. Although in some cases, the effectiveness of the proposed self-adaptive pol-
icy isn’t better than the method with equal action preference assumption. There may 
exist several reasons. For example, the situation space division manner of P does not 
match with which of E. 
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In Fig. 3, “+” represents the pursuer, “ο” represents the evader. 

5. CONCLUSION 

A self-adaptive predictive policy for pursuit-evasion games is presented, which 
takes action preference of its opponent into account. The estimation of an opponent’s 
action preference in some situation would be adjusted according to the observation of the 
opponent. Thus, the predictive policy is self-adaptive. In essence, the adjustment proce-
dure of the estimation of an opponent’s action preference is a procedure of modeling the 
opponent’s decision-making. Agent usually has different action preferences in different 
situations. To model an opponent more precisely, the player should divide the situation 
space into many categories. The policy can be used in real-time adversarial games. In 
such games, it may be unknown whether players are irrational or not.  

Based on the model of RoboCup middle size soccer robots, a simulation has been 
carried out. The proposed policy has been illustrated to be effective.  

In future, we would try to do further research and apply it in real soccer robots. It 
requires precise world modeling, including localization, motion estimation, etc.  
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