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Abstract : We present an omnidirectional vision system we have implemented to provide our mobile robot with
a fast tracking and robust localization capability. An algorithm is proposed to do reconstruction of the environ2
ment from the omnidirectional image and global localization of the robot in the context of the Middle Size
League RoboCup field. This is accomplished by learning a set of visual landmarks such as the goals and the
corner posts. Due to the dynamic changing environment and the partially observable landmarks , four localiza2
tion cases are discussed in order to get robust localization performance. Localization is performed using a
method that matches the observed landmarks , i. e. color blobs , which are extracted from the environment .
The advantages of the cylindrical projection are discussed giving special consideration to the characteristics of
the visual landmark and the meaning of the blob extraction. The analysis is established based on real time ex2
periments with our omnidirectional vision system and the actual mobile robot . The comparative studies are pre2
sented and the feasibility of the method is shown.
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　　In mobile robotics it is essential to the performance
of many tasks , such as autonomous navigation and map
exploration , to have complete information of the envi2
ronment. For example , in order to navigate an au2
tonomous mobile robot in an unknown environment , it
is very useful to have sensors capable of seeing in all di2
rections. Recently , there has been increased interest in
omnidirectional vision for applications in autonomous
mobile robotics[1 ,2 ] .

Omnidirectional vision system covers a 360°field
of view by analyzing only one image. This makes it
possible to implement fast vision sensors suitable for a
wide range of applications , such as : autonomous navi2
gation , scene reconstruction and multi2robot coopera2
tion[24 ] . Omnidirectional vision offers a number of sig2
nificant benefits. Specifically , it is much easier to deal
with rotation of the camera mounted on the robot be2
cause the objects will not disappear f rom the omnidirec2
tional view.

Generally there are two kinds of localization meth2
ods : absolute localization and relative localization [5 ,6 ] .
However , most of the proposed solutions do not take
into account some real constraints encountered in prac2
tical applications and are not suitable for robust localiza2
tion under a dynamic and partially observable environ2
ment . During the robot soccer game , the robot motion

planning requires no human intervention. The real
robot soccer field is dynamic and adversarial. Assuming
that no collisions occur is unacceptable since the dead
reckoning may generate unbounded error due to wheel
slippage and collision. Since other robots may occlude
landmarks during the soccer game so the robot must
consider the collisions and occlusions in order to get real
time robust performance. Therefore , active robust lo2
calization is necessary for the mobile robot in a partially
observable and adverse environment .

One of the most important activities for a soccer
robot is searching and tracking the ball while looking
for goals and posts for self2localization and perceiving
other teammates in order to interact with them and
avoid opponents. For the Middle Size League RoboCup
teams , global information is not available. Most of the
robots had a single , fixed camera on board which was
pointed forward. This vision system covers only a por2
tion of the field and requires fast movements of the
robot to t rack the ball and other moving robots. More2
over , when navigating purposefully , for instance ad2
vancing the ball or t rying to reach a position , the vision
direction (usually the heading of the robot) might not
be optimal. For example , if the robot dribbles the ball ,
it has to check the presence of the ball in f ront of it as
well as the presence of the goal or opponents in other
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directions. To address this problem , some teams
mounted a camera on a pan2and2tilt system[7 ] to de2
couple the vision direction from the robot movement ,
but the pan2and2tilt system was relatively slow and did
not allow effective tracking. The pan2and2tilt system
just improved the performance of the normal perspec2
tive vision system. It did not achieve a wide field of
view.

However , problems exist for the omnidirectional
vision system. One of them is the shape distortion of
the object in the panoramic image. Although the goals
are rectangular in the Middle Size League RoboCup
field , they are fan2shaped in the original image of the
omnidirectional vision system. If we extract the blob
of the fan2shaped object , i . e. the center , width ,
height and area of the object , it will result in a system
error and a loss of many useful visual features.

In this paper we propose a robust global localiza2
tion method for the soccer robots in the Middle Size
League RoboCup field using an omnidirectional
camera. First , we get the original omnidirectional im2
age and transform it into a panoramic image using
Cylindrical Projection. Secondly , we automatically or
manually learn the RoboCup field landmarks from the
training images and extract the color blob of the goals ,
the posts and the ball in HSL color space from the
background of the rectangular image. Then we cali2
brate the omnidirectional vision system , track the ball ,
select the landmarks and localize the robot .

The paper is organized as follows : In Section 1
the omnidirectional vision system is described. The
Cylindrical Projection and its advantages and disadvan2
tages are presented in Section 2. Section 3 demon2
st rates the robust landmark extraction and global local2
ization method. The validity is shown by real time ex2
periments. Conclusions are presented in Section 4.

1　Omnidirectional Vision System

For the RoboCup Middle Size League , we have
developed an autonomous mobile robot J iaolong which
is equipped with an omnidirectional camera as shown in
Fig. 1. The hardware of the omnidirectional vision
system consists of two major components : a mirror
which is symmetrical on rotation and an apparatus
which supports the mirror.
　　Technically , an omnidirectional vision system can
be achieved in various ways. Generally , there are four
types of mirrors : spherical mirror , conical mirror , hy2
perboloidal mirror and parabola mirror [8 ] . The omnidi2
rectional system with the spherical mirror does not
have a single center of projection and cannot be trans2
formed into normal perspective images. The hyper2
boloidal mirror is best for an optic system using a nor2
mal CCD camera and the original image can be trans2
formed to a normal perspective , cylindrical image.

However , it is very difficult to design since the focal
point of the hyperboloid needs to be set on the camera
center. The system with a parabola mirror is very ex2
pensive and the size of a telecentric lens is not small.

Fig. 1　Mobile robot with omnidirectional vision system

　　In this paper the omnidirectional vision system
consists of catadioptric systems with conical mirrors
and ordinary perspective cameras (as shown in Figs. 1
and 2) . This omnidirectional vision system has the fol2
lowing advantages over the perspective vision systems :

1) The catadioptric systems capture the entire
scene in a single instant , making them well2suited to
analysis of dynamic environments.

2) The image resolution and distortion of the cone
are favorable in comparison with other shapes of mir2
rors.

3) The conical mirror is relatively inexpensive and
standard CCD cameras are widely available.

Fig. 2　Omnidirectional mirror and the image
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2　Omnidirectional Image and Cylinder Projection

211　Omnidirectional Image
Robot control in a highly dynamic environment ,

e. g. the Middle Size League of RoboCup , is a real2
time sensory data acquisition and processing task. The
surrounding scene of the robot is rapidly changing and
there is a need to continuously track the ball , the goals
and the corner posts to accomplish the soccer robot’s
tasks such as global localization , map building and
teammate cooperation.

The input image of our omnidirectional vision sys2
tem is captured from a standard CCD camera which ob2
serves through the conical mirror. The camera is con2
nected through a USB2PCI adapter with a laptop . The
frame grab rate is 15 frames per second and the resolu2
tion is 320×240 pixels (24 bit t rue color) as shown in
Fig. 3. The source image shows how the camera sees
the robot body , other robots , the field , the goals , the
ball and a part of the ceiling.

Fig. 3　Omnidirectional source image

212　Cylindrical Projection
To increase the robustness for occlusions and to

gain additional rotational independence , we performed
Cylinder Projection on the original source image. The
omnidirectional source image is warped onto the cylin2
der. In Fig. 4 the cylindrical panoramic image contains
only the scene , discarding the robot body and the ceil2
ing. As shown in Figs. 3 and 4 , the cylindrical projec2
tion which projects the images onto a cylindrical sur2
face , yields significant data reduction. After the Cylin2
der Projection , the image data is reduced from 320 ×
240 to 360×104 (48175 % of the original image size)
or f rom 640×480 to 360×210 (2416 %) .

For each omnidirectional vision system , we should
first find the centre of each image with pixel accuracy ,
i. e. the coordinate ( x 0 , y0) and the valid radius r0 of
the mirror center. Once we know the above parame2
ters , we can transform the“circular image”(as shown
in Fig. 3 ) polar coordinate representation I (θi , rj)

that is obtained directly f rom the usual Cartesian coor2
dinates format IR ( x i , y j) or ICP (θi , rj) whereθi ∈[ -
180 ,180 ] , rj ∈[1 ,104 ] (as shown in Fig. 4) .

Fig. 4　Cylindrical projection of the source image

　　Considering the storage format of the image in the
computer , the Cylinder Projection algorithm is as fol2
lows :
Algorithm : CylindricalProjection ()
{
for i = 0 ; i < W Dest

　for j = 0 ; j < HDest

　 x 1 = j + r0·sin i
　y1 = j + r0·cos i

　Dest [ W Dest ·j + i ] = Source[ W ( H - y0 - y1) +

x 0 + x 1 ]

　Dest [ W Dest·j + i ] = Source[ W Source ( HSource - y0 -

y1) + x 0 + x 1 ]

　end
end
}

S ource[·] and Dest [·] are the original source im2
age and the rectangular image respectively. For our
omnidirectional vision system , the parameters are
W Source = 320 , HSource = 240 ; x 0 = 167 , y0 = 127 ;

W Dest = 360 , HDest = 104 .

Fig. 5 shows the comparison of the blob area ratio
Kball , Kblue , Kyellow between the original image and the

Cylinder Projection image KCP.

K =
A

( B right - B left) ·( B bottom - B top)
,

where B left , B right , B top and B bottom describe the bound2
ary of the blob and A is the blob area.

KCP is mostly invariant to change in the heading
θR of the robot when the robot rotates at a given posi2
tion ( X R , Y R) . In Fig. 5 the parameters are normal2
ized.

Kθ = 015 +
θR

360°, whereθR ∈[ - 180 ,180 ].

　　θR is calculated by the pose estimation method
which is proposed in Section 41211. In the experi2
ment , we let the robot rotate at a given position [ v ,
ω] = [ 0 ,10°/ s ]where two goals are available. Fig. 5
shows that θR changes uniformly in [ - 180 , 180 ] ,
which proves that the proposed robot pose estimation
method is very stable and precise.
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Fig. 5　Rotation dependence comparison

　　The omnidirectional image is stored in matrix for2
mat and it cannot directly and continually process the
“circular image”. It is easier for humans to view them
in the rectangular format , i. e. perspective format .
The most important concern is that all the landmarks
in the RoboCup field are rectangular. In order to get
valid blob information we cannot simply extract the
blob in the original“circular image”; therefore , the
blob in rectangular format is more meaningful for com2
paring with the original image (as shown in Figs. 3 and
4) . Considering the partial occlusions of the visual
landmarks and rotational differences between the
robot’s pose at the current position compared to the
robot’s pose at the next reference position of the train2
ing phase , we cannot use only the coarse center posi2
tion of the goals to localize the robot in the field.

The advantages of Cylinder Projection are as fol2
lows: image data reduction , high resolution , rotation
independent of self2localization and robust ball t rack2
ing. If we use the original omnidirectional image to lo2
calize the robot , the result is dependent upon the rota2
tion (as shown in Fig. 5) . In the original image the
ball is a very small blob when it’s distance to the robot
is f rom 80 mm to 1 500 mm while within the cylindri2
cal image the ball is big enough for blob extraction.
213　Property of Cylindrical Projection

The Cylinder Projection maps the sector/ ellipse on
the original source image to the rectangle/ circle mak2
ing it possible to extract the objects’geometrical fea2
tures. For example , we can extract the edges of the
objects directly f rom the blob. The Omnidirectional vi2
sion system can get precise azimuth information of the
object and Cylinder Projection makes full use of this
advantage of the panoramic image. It can get the pre2
cise angle of the goal’s two edges and the corner posts.

We define the eigen area of the landmarks as fol2
lows :

E = r·δθ =πr·(θr - θl) / 180 .
Whereθl andθr (θr >θl) are the left and right edge of
the blob in Fig. 4 respectively and r is the bottom of
the blob. Generally E is constant for a given visual
landmark. E is proportional to the width of the land2
mark especially for the cylindrical landmarks , e. g. the
corner posts , which enable us to distinguish the corner
posts and the goal very easily.

3　Global Local ization

311 　Blob Extraction and Omnidirectional Vision
Calibration

In order to increase the robustness and reduce the
computational burden , the object t racking algorithm is
based on the blob extraction[7 ,9 ] , which supplies the
pixel coordinate of the center ( Xc , Yc) , top left corner
( X l , Y t) and bottom right corner ( X r , Y b) of the blob
(i. e. the width and height) and area A. This estima2
tion model is used to map the image pixel bI ( Xc , Yc)

( Pixels) to the field coordinates bC ( X C
b , Y C

b ) (mm) .
The camera was calibrated by placing a ball at

known distances in the field and reading the pixel value
of the ball blob. The estimate can be used by the local2
ization of the ball , the opponents and teammates. This
mapping is learned by training the correspondence be2
tween pixel coordinates and Cartesian coordinates for a
set of well2chosen positions and using Lagrangian in2
terpolation for other pixels (as shown in Fig. 6) . By
keeping a history list of positions for all objects , the
heading and velocities can be determined in order to
predict the ball’s position.

Fig. 6　Omnidirectional vision calibration

　　Our omnidirectional vision software permits inter2
active calibration of the omnidirectional vision system.
The user simply specifies the center and the radius of
the omnidirectional image using a graphical interface.
312　Global Local ization of the Robot

The robot pose is represented by R ( X R , Y R ,θR)

in the working space W : XO Y . The more precise and
rich information the omnidirectional vision system pro2
vides , the more robust the localization will be. For a
soccer robot in the Middle Size League RoboCup field
there are a total of 6 landmarks (2 goals and 4 posts) .
However , at a given position , there are a maximum 4
landmarks available. During the game there are 8
robots on the field. Occlusion is inevitable for the soc2
cer robot , especially for the forward player.

There are 3 cases of Cylinder Projection for the lo2
calization of the robot and ball t racking (as shown in
Fig. 7) . The drawback of Cylinder Projection is that
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it may divide a whole object in the source image into
two blobs as shown in Fig. 7 (a) and ( b) . The two
blobs must first be merged before ball t racking and
self2localization are accomplished.

Fig. 8 demonstrates the experiment results of
Cylinder Projection in 3 cases.

(a) Normal Cylinder Projection

(b) A goal is split by the Cylinder Projection

(c) The ball is split by the Cylinder Projection

Fig. 7　3 Cases of Cylinder Projection

(a) Normal result

(b) Split one goal is divided

(c) Ball is divided

Fig. 8　Experiment results of Cylinder Projection

31211 　Case I : both of the goals are available
If both of the goals are available for the robot , lo2

calization performance is most reliable and the localiza2
tion algorithm is simple. The soccer robot with only a
forward perspective camera or a pan2and2tilt camera
cannot observe both of the goals through only one im2
age. However , an omnidirectional vision system makes
it possible to use two goals to localize the robot and
track the ball in a wide field of view range.

In Fig. 9 the two goals are represented in the lo2
cal robot coordinate and in the field coordinate by (U2
nit : cm) :
L CS : OA : ( a ,θmygoal) , OB : ( b ,θoppgoal) , | AB | = c
W CS : OA : ( a , - 90 - sgn ( X R) ·α) ,
　OB : ( b ,90 + sgn ( X R) ·β) , AB : (100 ,90) .

The heading of the robot plays an important role
in the localization and object t racking system because it
decides how to interpret the omnidirectional vision da2
ta. Therefore , we should first calculate the orientation
θR .

δθ =θmygoal - θoppgoal ,

sgn( XR) =
1 |δθ∈[ - ∞, - 180] ∨[180 ,∞]

- 1 |δθ∈[ - 180 ,180]
,

where sgn ( X R) represents the sign of X R . If sgn ( X R)

equals 1 , X R is positive and vice versa.

α = cos- 1 a2 + c2 - b2

2 ac
,

β = cos- 1 c2 + b2 - a2

2 bc
,

θ1 = 90 + sgn ( X R) ·β - θoppgoal ;

θ2 = 90 - sgn ( X R) ·α - θmygoal ;

θR =
θ1 +θ2

2
.

　　After determining the robot heading , the position
X R and Y R can be calculated :

d =
absinθ

c
, X R = sgn ( X R) d ,

Y R = [100 - a ·sin (θoppgoal - θR) + b ·sin (θR +
θmygoal) ]/ 2 .

31212 　Case II : only one goal is available
If only one goal and one post are visible for the

robot at a given position , we must first get the goal in2
formation (θl ,θr , rmin) i . e. (θa ,θb , ra) , and then we
can get two candidate poses which are on the same cir2
cle in the World Coordinate System as shown in Figs.
10 and 11.

δθ = | θa - θb | ,α1 = 90 - δθ,

| A C | =
| AB |

2·sinδθ,α2 = cos- 1 rmin

2 | A C |
,

θR =
θa +α1 +α2 - 180 , Type I
θb +α1 +α2 - 180 , Type II.
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Fig. 9　Localization using two goals

Fig. 10　Localization with only one goal

　　Then we select the unique pose of the robot f rom
the type of the goal. If the shape of the goal is type I ,
then the robot pose is R1 ( X R , Y R ,θR) , otherwise
R2 ( X R , Y R ,θR) .

R =
Type I : R1 ( XR , YR ,θR) if

θa +θb
2

<θc

Type II : R2 ( XR , YR ,θR) if
θa +θb

2
≥θc ,

whereθc is the center of the blob.
3 . 213 　Case III : one goal and one post

Using A and H to localize the robot is similar but
simpler than the above. Then we can fuse the pose cal2
culate f rom A , H and from A , B together.

(a) Type I

(a) Type II

Fig. 11　Localization experiments with only one goal

3 . 214 　Case IV : no visual landm ark is available
If there are no visual landmarks available , we

have to employ the odometer or ask the off field server
for the global map . Actually , there are at most 8
robots in the field and this case is very infrequent or
temporary. By recording the history list of the robot’s
pose and updating the odometer , we can get satisfacto2
ry results.

The global localization and object t racking method
may be summarized as follows. First , we get the origi2
nal omnidirectional image and perform Cylindrical Pro2
jection on it . Secondly , we train the omnidirectional
system to learn the visual landmarks and extract the
color blob of the ball , the goals and the posts in HSL
color space. Thirdly , the split blobs are merged into
one object and the omnidirectional vision system is cali2
brated. Finally , after the landmark’s geometrical fea2
ture is extracted , we consider 4 localization cases
which appear in real robot soccer games.

4　Conclusion

This paper deals with the essential problems of
Middle Size League RoboCup and an analysis is estab2
lished based on experiments which have practical appli2
cation for real competitions. Absolute localization of
robots in the RoboCup field using an omnidirectional
camera is presented in this paper. First we discuss the
advantages of the omnidirectional vision system. After
learning the RoboCup field landmarks from training
images , the omnidirectional vision extracts the reliable
color blobs of the ball , the goals and the posts. This
paper presents theoretical and experimental compar2
isons between the Cylindrical Projection and the origi2
nal image. The advantages of Cylindrical Projection are
obvious through the experiment result and analysis and
it not only greatly improves the computing efficiency
but improves the precision and robustness of object
t racking and global localization for our Jiaolong Middle
Size League robot soccer. Robustness and stability are
most significant for the design of robot soccer and this
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paper has taken all the possible localization cases into
consideration in order to get reliable localization perfor2
mance.

In future work we will implement a dist ributed
omnidirectional vision system using Multi2Sensor Data
Fusion ( MSDF) which is essential for Simultaneous
Localization and Map Building (SLAM) and the coop2
eration of the whole robot soccer team.
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