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Abstract - A one-by-one learning algorithm similar to 
traditional incremental learning for CMAC is suggested. The 
convergence properly is investigated based on the principles of 
geometric sequence and iteration theory of linear equations. The 
sufficient condition for the convergence of the algorithm is the 
same as that of incremental learning. The performance of two 
algorithms is compared, then a hyhrid one-by-one learning with 
incremental learning algorithm is proposed. The simulation 
results about hvo-dimension function approximation prove the 
hybrid algorithm has better performance in convergent speed 
and precision. 

Index Terms - one-by-one Ienrning: incrementul learning; a 
hybrid one-by-one learning with incremental leurning: CMC 

1. INTRODUCTION 

Cerebellar Model Articulation Controller (CMAC) 
network was first developed in the 1970s by Albus [ I ]  as a 
control method based on the principles of the cerebellum’s 
behaviour. The main advantages of CMAC against MLP, 
RBF, etc. networks are it’s local generalization, extremely fast 
leaming and easy implementation in software and hardware, 
so it has been widely used in many fields, especially in real- 
time control in robotics and other industrial control fields [2- 

According to the way of error correction, there are two 
basic schemes in CMAC training. One is incremental leaming 
and the other is hatch leaming. In batch learning, all the 
information about the training data points in one cycle should 
be known, and the range of learning rate is difficult to 
determine. These limit the usage of this method. According to 
the way of selecting training samples, incremental learning 
and batch leaming both belong to cyclic leaming and all 
training samples are repeated in many cycles. Kwon [ 5 ]  
developed a random training method in which the training 
samples are selected in random fashion. David E. [6] pointed 
out that random training required relatively long training 
periods to reach a desired performance level, and he suggested 
a method termed as neighborhood sequential training. In this 
method, training points that lie outside of the neighborhood of 
the previous training points are chosen. It is usually 
impossible if the function to be leamed is unknown. So 
developing general training techniques with better convergent 
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performance for CMAC is important, however, little work has 
been done. 

In this paper, we first present a leaming algorithm named 
as one-by-one learning and investigate its convergence 
property. Then by comparing one-by-one leaming with 
incremental leaning, a hybrid one-by-one learning. with 
incremental learning algorithm is proposed. The simulation of 
two-dimension function approximation is carried out to 
compare the performance of these three algorithms and 
conclusions are given at last. 

It. ONE-BY-ONE LEARNING ALGORITHM 

CMAC can .be considered as an associative memory 
network which performs two subsequent mappings: f: X+A, 
g:  A - P ,  where X is a m-dimension input space, A is an 
association vector 9 which contains N,, elements . W is the 
weight vector and P is the output space. The first mapping 
projects an input space point X, into a binary associative 
vector A,. Only the cells which are activated by X, is set to “1” 
and others are set to “0”. The second one calculates the output 
of the network as scalar product of the association vector A h  

and the weight vector W: 
N* 

y ,  = ~ , . ~ = x a ~ , ~ w ~  (1) 
i=l 

where k means the k-th state, the weights are updated as the 
following 

( Y d J  - yk (2) W ( j +  I) = ~ ( j )  +A P *  A 
g 

where j means the j-th cycle, ,8 is the leaming rate, g is the 
number of activated association cells (the generalization 
parameter), and yd,k is the desired output at the k-th sample. 

Incremental leaming is often used for training CMAC, in 
which each training sample is presented in tum and the 
weights are updated at each presentation according to (2). As 
we can see, the error of every sample is corrected only one 
time in one cycle. So the actual output is still far away from 
the desired one. We suggest a leaming method named as one- 
by-one learning. It is also a cyclic leaming. The only 
difference between one-by-one learning and incremental 
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learning is, in the former, the error correction is repeated for 
each sample until the error is smaller than the defined value 
aforehand. This repeated error correction may result in longer 
learning time, but it is found in our study, the convergence 
speed isn't reduced significantly only if the leaming rate isn't 
too small. By this way, the error of every sample will be 
reduced to the minimum, so we wish the total error of all 
samples after each cycle will be reduced also; But through 
detailed analysis in section IV, we drew an interesting 
conclusion, and which enlightened ns to get a hybrid one-by- 
one leaming with incremental leaming algorithm. 

m. THE CONVERGENCE OF ONE-BY-ONE LEARNING 

In this section, we will discuss the convergence property 
of one-by-one learning. Suppose that W is set to a null vector 
before leaming begins. (XI,  ) is the first training sample. 

The defined permitted error is ep . When XI is presented into 

CMAC in first cycle. The output will be 0, so the error is 
yd,l, corresponding weighs are updated based on (2).  After 
the first update, the error will turn 
into - p * = * (1 - p) . After the second update, 

the error will turn into 

Yd.1 - P * Yd.1 - P * (1 - f l )  * Yd,i = Yd,i * (1 - P) ' ,  and the rest 
may be deduced by analogy. The values of different items are 
listed in table 1 to show this process. 

As can be seen from tablel, the correction error in each 
update composes a geometric sequence. The fist item of this 
geometric sequence is P * y d , ,  , and 1 - b  is the geometric 
parameter. According to the principles about geometric 
sequence, after n times update, the sun1 of the geometric 
sequence is 

(3 )  

It is obvious that if the geometric parameter 1 - P fits 
inequality, 

I I - p l < l , -  0 < p < 2  (4) 
TABLE I 

THE LEARNING PROCESS OF THE SAMPLE (XI ,Yd . l )  

Correction error 

(1 - P, * Yd,l 
I I I 

... ... ... I I I "' I P * Yd, l  + 

The sequence is convergent. If the permitted error e p  is 

very small, such as ep=O.OOO1, after n times update, the error 

of the sample will he smaller than ep ( n- m if ep - 
0, p # l ) , t h e n  

P * Y d . ,  P) " )  
lim S, = lim Yd. ]  
n+m ,,+m 1-(1-P) 

( 0 < P < 2 , P # I )  (5) 
It can he seen the sum of this sequence is no other than 

the initial output e m r  of the sampIe(X,,y,,,) , so the desired 
output will converge to the actual output. I f p  = 1, the error 
correction is one-shot process. The same conclusion can he 
drawn from other training samples. In general, we can get 
theorem 3.1. 

THEOREM 3.1 In one-by-one learning algorithm, if 
0 i P i 2 ,  the .real output of every sample is convergent to 
the desired one in each cycle. 

In the following section, we will investigate the 
convergence of one-by-one leaming after many cycles when 
0 < P < 2 ,  Another description of CMAC algorithm proposed 
by Wong [7] is suitable to analyse the learning convergence, 
the goal of CMAC learning is to find a set of weights W such 
that 

AW=Y (6)  
A = [ A , ,  A , , . . .  A , ] ,Y  = , . . . y d , N ] T ,  N is the number 
of all samples. Wong proved the CMAC leaming tule was 
equivalent to find the solutions of the linear system (7) if the 
initial weights are set to zero. 

C A = Y  (7) 
where C = AAr , called as the correlation matrix, 
A = [ A , , A 2 , . . . A N l r ,  more details can be referred to [7]. In 

incremental learning, A ,  = PS(" / g, 6: is the output error 

when the i-th sample is presented in the I-th cycle, but in one- 
by-one cyclic learning, Ai  = E#' / g  . The update rule of 

I 

the I-th cycle can be written as 
i - 1  N 

A',? = A:. + I - ~ C ~ A ~ ~  - ccilA;.) ( 0 < p < 2 )  (8) 
g j=l j=i 

It can be seen that (8) is the same as the equation in 
incremental learning when p=1 . Wong had proved that 
when ,B = 1,  learning scheme expressed by (8) in incremental 
learning is equivalent to the Gauss Siedel iteration of linear 
equations (7), then we have lemma 3.1. 

Seidel iteration of the linear coupled equations Ax=b is 
convergent 

0 i ,B < 2 ,  one-by-one teaming scheme is convergent. 

LEMMA 3.1 If A is a positive definite matrix, Gauss- 

THEOREM 3.2 If C is a positive definite matrix, and 
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Proof. It can be easily obtained from theorem 3.1 and 
lemma 3. I .  

N. A HYBRID ONE-BY-ONE LEARNING WITH INCREMENTAL 

LEARNING ALGORITHM 

From theorem 3.2, we can see the sufficient condition for 
the convergence of one-by-one learning is the same as that for 
traditional incremental learning. When p = 1 , one-by-one 
learning is completely equivalent to incremental learning. By 
simulations of several functions approximation, we find in 
one-by-one learning, although the error of every sample is 
reduced to the minimum after it is presented, the learning of 
subsequent samples will destroy this precision because of 
"learning interference". The error of the sample after all the 
samples have been trained in each cycle is still very large. We 
also find when p >  1,  the total error of all samples after the 
same cycle in one-by-one learning is smaller than that in 
incremental learning. However, when p < 1 , a contrary 
conclusion is drawn. The theoretic explanation of this 
phenomenon is difficult, so qualitative analysis is given. 

In one-by-one learning, as for sample ( X i ,  Y , , ~  ) in the I- 
th cycle, the learning interference of subsequent samples is 

I x c e B ;  / g 1 ,  ce is the element in matrix C. In incremental 
j=i+l 

learning, the corresponding item is I p * zci16f / g  1 .  So it is 

obvious, if 6;. is the same, the learning inference in one-by- 

one learning is smaller than that in incremental learning 
when p > 1. So total error of all samples after each cycle is 
smaller. The contrary conclusion can be obtained by the same 
way when p < 1 . In fact, 6: isn't the same in two learning 
algorithms, but we can consider that the value of p plays a 

more important role than the difference of 6; in learning 
interference. 

This conclusion enlightens us that, if the learning 
parameter is adjusted dynamically, a hybrid one-by-one 
learning with incremental learning algorithm will get much 
better performance. Dynamic adjusting learning rate has been 
suggested by many researchers and proved a good way to 
improve the convergent performance of general CMAC 
algorithms [8-91. The hybrid algorithm is realized as follows, 
first a= Po .(I < Po < 2), then training samples are learned in 
order, when cycle >2, if TE(cycle) < TE(cylce - 1) , p = p , 
otherwise p=O.8*p , if p>l  , one-by-one learning 
algorithm is used, when p is reduced to be smaller than 1, 
incremental learning is used. TE means total error and is 

defined as TE = c I e i l  = x l y d , i  - yil 

N 

N 

j=i+l 

N N 

i=l . i = ,  

- 
1.5 

1 

0.5 

0 

... 
....... one-by-one leaming 

~ ~ ~ ~ ~ ~ ~ ~ . ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ . . ~  .............. 1 
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VI. CONCLUSIONS 

Fig.1 The comparison of convergence property of different algorithms 

We first suggest a one-by-one learning algorithm for 
CMAC and prove if C is a positive define matrix, and 
0 < p < 2 ,  the proposed learning scheme is convergent. This 

sufficient condition for the convergence is the same as that of 
traditional incremental learning. By comparing the 
performance of two algorithms, a hybrid one-by-one leaming 
with incremental learning algorithm is proposed. A two- 
dimension function approximation is used to compare these 
three different algorithms and the simulation results prove the 
hybrid algorithm is better than the others in convergent speed 
and precision. The hybrid algorithm has no additive limits, so 
can replace incremental learning and be widely used. 
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