
TSINGHUA SCIENCE AND TECHNOLOGY 
ISSN 1007-0214  03/18 pp519-526 
Volume 9, Number 5, October 2004  

Advanced Credit-Assignment CMAC Algorithm for Robust 
 Self-Learning and Self-Maintenance Machine* 

ZHANG Lei (张  蕾)**, LEE Jay , CAO Qixin (曹其新), WANG Lei (王  磊) 
 

Research Institute of Robotics, Shanghai Jiao Tong University, Shanghai 200030, China; 
�Research Center of Intelligent Maintenance Systems, University of Wisconsin-Milwaukee, WI 53224, USA 

 
Abstract:  Smart machine necessitates self-learning capabilities to assess its own performance and predict 

its behavior. To achieve self-maintenance intelligence, robust and fast learning algorithms need to be em-

bedded in machine for real-time decision. This paper presents a credit-assignment cerebellar model 

articulation controller (CA-CMAC) algorithm to reduce learning interference in machine learning. The 

developed algorithms on credit matrix and the credit correlation matrix are presented. The error of the 

training sample distributed to the activated memory cell is proportional to the cell’s credibility, which is 

determined by its activated times. The convergence processes of CA-CMAC in cyclic learning are further 

analyzed with two convergence theorems. In addition, simulation results on the inverse kinematics of 2-

degree-of-freedom planar robot arm are used to prove the convergence theorems and show that CA-CMAC 

converges faster than conventional machine learning.  

Key words:  cerebellar model articulation controller; machine learning; self-maintenance machine; self-

learning 

 

Introduction 

Smart machine necessitates self-monitoring, self-
diagnosing, and self-maintenance capabilities. The key 
challenge is to embed fast learning algorithms in ma-
chine controller to enable real-time behavior assess-
ment and prognostic intelligence. Many neural net-
works-based algorithms have been developed to 
achieve this objective in the past decades. Among 
these developed tools, the cerebellar model articulation 
controller (CMAC) network developed by Albus[1,2] 
has the unique advantages of local generalization, ex-
tremely fast learning and easy implementation in 
software and hardware, so it is considered as a good 

alternative to the backpropagation method[3]. CMAC 
has been widely used in many fields, such as function 
approximation[4], chaotic time series prediction[5], es-
pecially in robotic control[6-8]. Wong and Sideris[9] dis-
cussed the learning convergence of CMAC, and 
pointed out that the CMAC learning algorithm in cy-
clic learning is equivalent to the Gauss Siedel iterative 
scheme of linear system. However, only a special case 
was considered in the paper where the learning rate of 
CMAC was one and the training samples were noise-
less. Yao and Zhang[10] extended Wong et al.’s results 
to the case where the learning rate is other than one 
and discussed the learning convergence of CMAC 
when the training samples have noises. They proved 
that the CMAC learning scheme converges if and only 
if the learning rate is chosen from (0, 2). Lin and 
Chiang[11] also proved that the memory contents of 
CMAC either with or without hash mapping will con-
verge to a limit cycle providing that the learning rate is 
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in (0, 2). This conclusion is the same as Yao et al.’s. 
Lee and Kramer[12] introduced an innovative concept in 
using CMAC for machine performance degradation as-
sessment and presented some pioneer work with ex-
periments. They further presented the advanced con-
cepts in using the developed self-learning capabili-
ties for remote monitoring and prognostics[13,14]. 

There are two basic learning schemes in CMAC: cy-
clic learning and random learning. In both of these two 
schemes, there exists a problem termed as “learning in-
terference” which means that training of subsequent 
samples will destroy the precision of previous ones. 
Learning interference is one of the important reasons 
decreasing convergence speed of CMAC. To reduce 
learning interference, Thompson[15] suggested a 
method named as neighborhood sequential training. 
Sayil and Lee[16] developed a hybrid maximum error 
with neighborhood training algorithm. But in 
neighborhood training algorithm, training points that 
lie outside of the neighborhood of the previous training 
points are chosen. It is usually impossible that the two 
methods are applied practically if the function to be 
learned is unknown. 

In Ref. [17], Su et al. suggested a credit-assignment 
CMAC (CA-CMAC) algorithm to speed up the con-
vergence of CMAC, but they did not make any analy-
ses on the convergence property of CA-CMAC. In this 
paper, we propose a more general CA-CMAC algo-
rithm. We further present the concepts of the credit 
matrix and the credit correlation matrix, and then prove 
that the conventional CMAC algorithm is a special 
case of the proposed CA-CMAC algorithm. Further-
more, the convergence properties of CA-CMAC in cy-
clic learning are investigated while the training sam-
ples without or with noises, respectively. The conver-
gence theorems are obtained, which are significant as a 
guidance to choose the learning rate in CA-CMAC 
practical applications. Finally, simulations are carried 
out to compare the convergence performance of CA-
CMAC with that of conventional CMAC. 

1  Credit-Assignment CMAC 
Algorithm 

CMAC can be considered as an associative memory 
network, which performs two subsequent map-
pings: : , : ,f h→ →X A A P where X is an M-

dimensional input space. A is an N-dimensional asso-
ciation cell vector which contains g nonzero elements. 
g is the generalization parameter. P is a one-
dimensional output space. In the first mapping, the 
point Xk in the input space is mapped into a binary as-
sociative vector Ak whose elements are defined as Eq. 
(1). In the second mapping, the network output is cal-
culated as the scalar product of Ak and the weight vec-
tor W, as shown in Eq. (2). The update rule to the 
weights is shown in Eq. (3). For the simplicity of 
analysis on the convergence, hash coding is not con-
sidered here. 
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where k is the k-th sample, Yr,k the real output of the k-
th sample, wj the j-th element in the weight vector W, t 
the t-th cycle, â the learning rate, and Yd, k the desired 
output of the k-th sample. 

From Eq. (3), it can be seen that all addressed mem-
ory cells get equal shares for error correction of the 
sample (Xk, Yd,k) in the t-th cycle. This will result in 
that previous learned information is corrupted due to 
learning interference. In fact, the memory cells acti-
vated by (Xk, Yd,k) may have different learning histories, 
and thus have the different credibility. Based on the 
concept of credit assignment, we assign the credibility 
to each memory cell, which is the inverse of the cell’s 
activated times. The error distribution is proportional 
to the credibility. The modified update rule to the 
weights can be written as 
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where f (j) is the activated times of the j-th memory cell. 
fk (l) is the activated times of the memory cell activated 
by the k-th sample. To prevent dividing by zero, the 
minimum value of the activated times of the memory 
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cell is set to 1 firstly. The more times the memory cell 
has been activated, the more accurate the stored weight 
is. Therefore, the equal share of error correcting as 1/g 

in Eq. (3) is replaced by ))(/1(/))(/1( lfjf
l

k∑  in 

Eq. (4). With this modification, the error of the training 
sample can be proportionally distributed into the 
activated memory cell based on its credibility. It is 
obvious that the modified error distribution is more 
reasonable.  

2  The Convergence Property of 
CA-CMAC 

Wong and Sideris[9] had proposed another description 
of the conventional CMAC algorithm to analyze the 
learning convergence. In this section, we will describe 
the learning process of CA-CMAC in the similar way.  

Suppose that the training samples are (Xi, Yd,i) 
(i=1,2,⋯, n), and n is the number of training samples. 
Consider the t-th cycle of the k-th training sample. The 

output error )(t
kδ = T ( )

d, .t
k kY − A W Let kg = (1/ ( ))k

l
f l∑  

and define the unit correction as k
t

k g/)(δ . From Eq. (4), 

correction for the weight in the memory cell activated 

by the k-th sample is 

k

t
kk

g
lf )()(/1 δ

. The correction may 

affect the outputs of other training samples. At this 
time, the output of the i-th training sample becomes 

T ( )t
i +A W ( ) / ,t

ik kkd gδ  where (1/ ( )),ik ik
l

d f l= ∑ )(lfik  

is the activated times of the memory cell which is acti-
vated by both the i-th sample and the k-th sample. Ob-

viously, kiik dd = , k
l

kkk glfd == ∑ ))(/1( . If the ini-

tial weights are set to zeros, after t cycles, the accumu-
lated unit correction of the k-th sample is k∆′ =  

( ) /t
kk

t
gδ∑ . Then the output of the i-th sample can be 

expressed as r ,
1

.
n

i ik k
k

Y d ∆
=

′= ∑  When the CA-CMAC 

learning converges, i.e., 
)(t

kδ  goes to zero, k∆′ will 

converge to a constant. Therefore, the convergence of 
CA-CMAC algorithm is equivalent to the convergence 
of .k∆′ Let ( ) ikd=D ( , 1,2, , ),i k n= L ′ =∆  

T
1 2[ , , , ] .n∆ ∆ ∆′ ′ ′L Expressed in a matrix form, the learn-

ing convergence is equivalent to find the solutions of 
the linear system, 

 ′ =D Y∆  (5) 

where T
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The diagonal elements of F represent the credibility 
of memory cells, so we call F the credit matrix. From 
the definition of D, we can get  

 D = AT F A (6) 
We call D the credit correlation matrix. D has many 

good properties, which can be described in Theorem 1. 
Theorem 1  The credit correlation matrix D has 

following properties: a) D is a real symmetric matrix. 
All elements are non-negative integers, and the diago-
nal elements are gk (k = 1, 2, …, n). b) D is a positive 
semidefinite matrix. 

Proof  Property a) can be obtained easily from the 
definition of D. Property b) is proved as follows: 

∃ X ≠0, quadratic form f (X) = XT
 D X = XT(ATFA)X = 

(AX)T F (AX)≥0, so D is positive semidefinite.  
Then Eq. (5) can be written as 

 T ′ =A FA Y∆  (7) 
If ( ) 1 ( 1, 2, , )f i i N= = L , F will become the unit 

matrix and gk (k = 1, 2, … , n) equals to g. Then Eq. (7) 
becomes 

 T =A A Y∆  (8) 

where T
1 2[ , , , ] ,n∆ ∆ ∆= L∆ ( ) /t

k k
t

gδ= ∑∆ (k=1,2, … , n). 

Equation (8) is no other than the equation of the linear 
system described by Wong and Sideris in the conven-
tional CMAC algorithm[9]. So the conventional CMAC 
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algorithm is just a special case of CA-CMAC, in which 
all the memory cells have the same activated times, 
and thus have the same credibility.  

In this paper, only cyclic learning is considered, 
where the training samples are presented to the CA-
CMAC in a cyclic fashion and weights are updated 
after each presentation. The convergence properties of 
CA-CMAC are investigated in two cases: the training 
samples with or without noises. 

2.1  Learning convergence of CA-CMAC without 
noises  

In cyclic learning, the update rule of the i-th sample in 
the t-th cycle can be written as 

1
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D can be written as D = L+G+U. L and U are the lower 
and upper off-diagonal parts of D, respectively. G is 
the diagonal part of D. Then Eq. (9) becomes 

 ( 1) ( ) ( 1) ( )( ( ) )t t t t∆ ∆ β ∆ ∆+ +′ ′ ′ ′= + − − +G G Y L G U  

  (10) 

i.e., ( 1)t +′ =∆  
1 ( ) 1( ) [(1 ) ] ( )tβ β β β β− −′+ − − + +G L G U G L Y∆  (11) 

Equation (11) is no other than the successive over 
relaxation (SOR) scheme of the linear system (Eq. (5)) 
with β being the relaxation factor. From the iteration 
theories of the linear equations[18], we get Lemmas 1 
and 2. 

Lemma 1  The necessary condition for the conver-
gence of SOR scheme of the linear system Ax=b that is 
the relaxation factor ω fulfils 20 << ω . 

Lemma 2  If A is a positive definite matrix, when 
the relaxation factor ω fulfils 20 << ω , SOR scheme 
of the linear system Ax = b converges.  

Then the following theorem is obtained.  
Theorem 2  The necessary convergence condition 

of CA-CMAC in cyclic learning when the training 
samples are noiseless is that the learning rate β fulfils 

20 << β . Specially, when D is a positive definite ma-
trix, 20 << β  becomes the sufficient and necessary 
condition. 

Proof  It can be easily obtained from Lemma 1 and 
Lemma 2. 

2.2  Learning convergence of CA-CMAC with 
noises 

Assuming when the i-th sample is presented to CA-
CMAC, a noise term iη  is added to the desired out-

put d,iY and iη are independent and identically distrib-

uted random variables with 0)( =iE η and 2( )iE η =  
2σ , we can prove the following theorem. 
Theorem 3  When the training samples have 

noises, assuming ,∞=∑
∞

t
tβ 2 ,t

t
β

∞
< ∞∑ and 0＜ât＜2, 

CA-CMAC algorithm converges with a probability of 
one in cyclic learning if βt decreases dynamically. In 

other words,
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To prove Theorem 3, we first introduce the follow-

ing lemmas. 
Lemma 3  Under the assumptions of Theorem 3, 

( )( )tE ′∆ converges. 
Proof  In the case with noises, the update rule of 

the t-th cycle can be written as 
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Like Eq. (9), Eq. (12) can be rewritten in a matrix 
form, 

( 1) 1 ( )( ) [(1 ) ]t t
t t tβ β β+ −′ ′= + − − +G L G U∆ ∆  

 1( ) ( )t tβ β −+ +G L Y η  (13) 

where T
1 2( , , , )nη η η= Lη . Taking expectations from 

both sides of Eq. (13), we obtain 
( 1) 1 ( )( ) ( ) [(1 ) ] ( )t t

t t tE Eβ β β+ −′ ′= + − − +G L G U∆ ∆  

 1( )t tβ β −+G L Y  (14) 

Equation (14) is another form of SOR scheme. 
Under the assumptions of Theorem 3, we have 

20 << tβ . Following Theorem 4.1(b) of Ref. [19], 
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( )( )tE ′∆  converges. 
Lemma 4  Suppose that { }nz  is a sequence of 

non-negative real numbers satisfying  

 2
1 1 0(1 ) O( ),n n n nz z z rγ γ+ ≤ − + =  (15) 

where r0 is an arbitrary non-negative real number and 

10 << nγ , ∞=∑
∞
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0lim =
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The proof can be referred in Ref. [10]. 
Note that Eq. (12) can be written as 
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Eq. (16) can be rewritten as 
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By repeatedly applying Eq. (17) to all the samples in 
the training cycle, we get 
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Equation (18) can be rewritten in a simple matrix form 
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Proof of Theorem 3 
Define ( ) *.t

t ′ ′= −δ ∆ ∆ Subtract *′∆ from both sides 
of Eq. (19), 
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Given the bound of ( )tβR and 0 ( )tβR , Eq. (22) can 
be simplified as 
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where T( ) ( ) ( )t t tβ β β+＝Q P P is an n×n matrix and 
all their entries are bounded when tβ approaches zero. 
Furthermore, it can be seen that ( )tβQ is symmetric. 

Let λmin, λmax denote the minimal and maximal ei-
genvalues of G 

−1D, respectively, and )( tβλ denote the 

maximal eigenvalue of ( )tβQ . Given that G�1D and 

( )tβQ are symmetric, from the matrix theories[20], we 

have 
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Therefore, from Formula (24), we get  
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Taking expectations from both sides of Formula (25), 
following Lemma 3 we have 
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We can choose a positive real number u and a posi-
tive integer T such that for Tt ≥∀ , 
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From Lemma 4 and the assumption of tβ , we get 
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The proof of Theorem 3 is completed. 
In Ref. [10], Yao and Zhang has proved that CMAC 

learning algorithm will not converge if the learning 
rate is kept fixed in the case that training samples have 
noises, so the convergence of CA-CMAC will not be 
discussed in this work when the learning rate is kept 
fixed in this case. 

3  Simulation  

To testify the theorems derived above, a simulation is 
carried out to solve an inverse kinematics problem of 
2-degree-of-freedom planar robot arm. Let (x,y) denote 

the coordinates of the gripper of the arm, and the joint 
angles are given by the following. 

1 2 2 1 2 2

2 2 2 2
2 1 2 1 2

arctan( / ) arctan  [ sin /( cos )],

arccos[( ) /(2 )]

y x l l l

l l x y l l

θ θ θ

θ

= + −


= + − −
 

   (32) 

where è1 and è2 are the first and second joint angles, 
0 � è1, è2 � ð . Only è1 is learned. l1 and l2 are the link 
lengths. Suppose l1 = l2 = 10 and 0＜x, y＜10. Simula-
tion parameters are as follows: the intervals of x and y 
of the training sample are both 1, i.e., x, y = [0.5, 
1.5, ⋯, 9.5]; the quantizing intervals of x and y are 
both 0.5; the generalization parameter is 8; the permit-
ted error of each training sample is 0.001; the maxi-
mum cycle is 1000. 

Simulation 1 
In this simulation, the training samples are noiseless. 

Figure 1 shows the mean square error (MSE) of all 
training samples versus each cycle. It can be seen that 
when 0＜â＜2.0, the CA-CMAC learning scheme is 
convergent. But when â = 2.0, the learning algorithm is 
not convergent. This confirms Theorem 2. 

 
Fig. 1  The convergence property of CA-CMAC with 

different learning rates 

1, â = 0.1; 2, â = 0.4; 3, â = 0.8; 4, â = 1.9; 5, â = 2.0 
 

Simulation 2 
In this simulation, when each sample is presented to 

CA-CMAC, a noise term is added to the desired output, 
which is a random variable generated by the Gaussian 
distribution N (0,0.05). The learning rate is adjusted 
dynamically as follows:  

 1 1

1

, if MSE MSE ;

0.8 , otherwise
t t t t

t t

β β
β β

− −

−

= <
 =

 (33) 

where MSEt means the MSE of all training samples 
after the t-th cycle. Figure 2 shows the MSE decreases 
and the learning algorithm converges when the 
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learning rate is dynamically decreased. This confirms 
Theorem 3. Figure 2 also shows that the convergence 
speed of CA-CMAC is faster than that of CMAC while 
the convergence precisions of two algorithms are 
similar. If the required minimum MSE is 0.001, CA-
CMAC achieves this goal after 55 cycles while CMAC 
needs about 150 cycles. 

 
Fig. 2  The convergence of two algorithms when the 

training samples have noises 

Simulation 3 
In this simulation, the training samples are noiseless 

and the learning rate is dynamically decreased as 
Formula (33). The comparative study in Fig. 3 shows 
that the convergence property of CA-CMAC is better 
than that of CMAC both in convergence speed and in 
convergence precision. The fast convergence speed is 
especially important for many real-time control 
applications.  

 
Fig. 3  The convergence of two algorithms when the 

training samples are noiseless 

4  Conclusions 

A credit-assignment CMAC algorithm is presented to 
reduce learning interference in machine learning. The 
convergence process of CA-CMAC is analyzed by pre-
senting the credit matrix and the credit correlation 
matrix, and CMAC is proved to be a special case of 

CA-CMAC where all memory cells have the same 
credibility. The convergence theorems can be used as a 
guidance for choosing the learning rate properly in 
practical applications. The theorems also show that 
CA-CMAC has no additive convergence conditions 
compared with CMAC. The simulation results show 
that CA-CMAC has better convergence property than 
conventional CMAC, especially in the convergence 
speed. It is evident that CA-CMAC can be easily to be 
embedded in machines for self-learning and self-
maintenance applications.   

References 

[1]  Albus J S. A new approach to manipulator control: The 

cerebellar model articulation controller (CMAC). Journal 

of Dynamic System, Measurement and Control, 1975, 

97(3): 220-227.  

[2]  Albus J S. Data storage in the cerebellar model articulation 

controller (CMAC). Journal of Dynamic System, Meas-

urement and Control, 1975, 97(3): 228-233.  

[3]  Miller W T, Glanz F H, Kraft L G. CMAC: An associative 

neural network alternative to back propagation. Proc. IEEE, 

1990, 78:1561-1567.  

[4]  Linse D J, Stengel R F. Neural networks for function ap-

proximation in nonlinear control. Amer. Control Conf., 

1990, 1: 674-679. 

[5]  Moody J. Fast learning in multi-resolution hierarchies. In: 

Touretzky D S, ed. Advance in Neural Information Proc-

essing Systems 1. Morgan Kaufmann, Los, Altos, CA, 

1989: 29-39. 

[6]  Miller W T, Hewes P R, Glanz F H. Real-time dynamic 

control of an industrial manipulators using a neural net-

work-based learning controllers. IEEE Trans. Robot. 

Automat., 1990, 6(1): 1-9. 

[7]  Cembrano G, Wells G, Sarda J. Dynamic control of a robot 

arm using CMAC neural networks. Control Engineering 

Practice, 1999, 5: 485-492.  

[8]  Lin C S, Kim H. CMAC-based adaptive critic learning 

control. IEEE Trans. Neural Network, 1991, 2: 530-535.  

[9]  Wong Y, Sideris A. Learning convergence in the cerebellar 

model articulation controller. IEEE Trans. Neural Net-

works, 1992, 3: 115-121.  

[10]  Yao Shu, Zhang Bo. The learning convergence of CMAC 

in cyclic learning. Journal of Computer Science & Tech-

nology, 1994, 9(4): 320-328. 

[11]  Lin C S, Chiang C T. Learning convergence of CMAC 

technique. IEEE Trans. Neural Network, 1997, 8(6): 



 526  Tsinghua Science and Technology, October 2004, 9(5): 519–526 
 

1281-1292.  

[12]  Lee J, Kramer B M. On the analysis of machine degrada-

tion using a neural network based pattern discrimination 

model. SME Journal of Manufacturing Systems, 1993, 

12(5): 379-387. 

[13]  Lee J. Teleservice engineering in manufacturing: Chal-

lenges and opportunities. International Journal of Machine 

Tools & Manufacture, 1998, 38(8): 901-910. 
[14]  Lee J. Machine performance assessment methodology and 

advanced service technologies. In: 4th Frontiers in 

Engineering, National Academy Report, 1999: 75-83. 

[15]  Thompson D E. Neighborhood sequential and random 

training techniques for CAMC. IEEE Trans-Neural Net-

work, 1995, 6(1): 196-202.  

[16]  Sayil S, Lee K Y. A hybrid maximum error algorithm with 

neighborhood training for CMAC. In: Proceedings of the 

2002 International Joint Conference on Neural Networks, 

2002, 1: 165-170.  

[17]  Su S F, Ted T, Hung T H. Credit assigned CMAC and its 

application to online learning robust controllers. IEEE 

Trans. Systems, Man, and Cybernetics-Part B: Cybernetics, 

2003, 33(2): 202-213.  

[18]  Xi Meicheng. Numerical Analysis Methods. Hefei, China: 

Chinese Science and Technology Publisher, 1995: 214-261. 

(in Chinese) 

[19]  Young D M. Iterative Solution of Large Linear Systems. 

New York: Academic Press, 1971. 

[20]  Shi Rongchang. Matrix Analysis. Beijing, China: Beijing 

Institute of Technology Publisher, 1996: 134-138. 

(in Chinese)

 
 

                           

President of Kyoto University Visits Tsinghua University 
 

Professor Kazuo Oike, President of Kyoto University, visited Tsinghua University on August 3, 2004. Tsinghua 
University President Gu Binglin met and had a friendly talk with professor Oike. 

President Gu introduced the development of Tsinghua University to the guests and the two sides discussed the 
cooperation in the future. 

After the meeting, Professor Oike paid visits to the Center for Advanced Studies and the Analysis Center. 
Tsinghua University and Kyoto University have been in good relations for a long time. Now the two universities 

are taking the lead in a Sino-Japanese Core University Program on “urban environment”. Eight Japanese universi-
ties including University of Tokyo and six universities in China such as Peking University took part in the program.  

Kyoto University was founded in 1897. It is the second university being established in Japan. 
 

Reported by Li Han 
 

(From http://news.cic.tsinghua.edu.cn) 

 

 


