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Abstract : This paper presents a feature extraction and correspondence algorithm which employs a novel feature trans2
form. Unlike conventional approaches such as Hough Transform , we employ a robust but simple approach to extract
the geometrical feature under real dynamic world conditions. Multi2threshold segmentation and the split2and2merge
method are employed to interpret geometrical features such as edge , concave corners , convex corners , and segments
in a unified framework. The features are represented by feature tree (F2Tree) so as to compactly represent the envi2
ronments and some important properties of the F2Tree are discussed in this paper. To demonstrate the validity of the
approach , we show the actual experiment results which are based on real Laser Range Finder data and real time analy2
sis. The comparative study with Hough Transform shows the advantages and the high performance of the proposed algo2
rithm.
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　　The localization and navigation methods which oper2
ate on the basis of geometric reasoning are highly depen2
dent on the reliable extraction and recognition of features
from sensor data of an autonomous mobile robot [1 ] . A key
research component of the SLAM (Simultaneous Localiza2
tion and Map Building) problem is that of reliable feature
detection and subsequent association. Image2based meth2
ods extract features based on edge formations , such as
corners or straight lines[2 ] , or perform segmentation on the
basis of intensity or color , while sonar2based methods at2
tempt to link sonar points into lines and structures[3 ] .

A geometrical feature is a special type of target that
can be reliably observed in successive sensor measure2
ments and that can be accurately described in terms of a
concise geometric parameterization[1 ] . Feature2based
methods are concerned primarily with optimizing feature
correspondence , and are susceptible to local minima in
the function to be optimized , especially when employed
with large2scale maps. Furthermore , these methods often
rely on an accurate a priori map which is usually obtained
from architectural drawings , or by manual measurement ,
which can fail to account for the presence of furnishings
such as desks or chairs , or the issues of the dynamics of
human and robot interaction with the environment .

A popular alternative to extracting naturally occurring

features from sensor data is to employ artificial landmarks ,
that is , features which are not natural to a particular envi2
ronment , but which are inserted , affixed , or otherwise de2
ployed on the basis that they can be more robustly detected
and extracted by a sensor. Artificial landmarks benefit
from the ability to easily extract parameters based on a pri2
ori knowledge of landmark geometry , or through explicit
labeling , such as bar codes or ultrasonic beacons[1 ,4 ] .
The use of artificial landmarks can greatly simplify the
problem of position estimation but there are significant
drawbacks due to the fact that they require prior (and of2
ten human) intervention and can impose other costly or
impractical requirements on the environment .

Employing a feature level description of the robotic
environment , the two important issues of feature extraction
and correspondence are addressed in this paper. The for2
mer is known as the detection problem , and the latter the
registration (or correspondence) problem. In a dynamic
changing environment , it is difficult to maintain robust
feature extraction and correspondence. For most feature2
based methods , the choice of which features to employ is
often sensor dependent and constrained to a particular ap2
plication domain. Popular algorithms for feature matching
and model extraction fall into two broad categories : gener2
ate2and2test andHough transform variations. However ,
both methodspresentproblemsinpractical implementations .
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Generate2and2test methods are sensitive to noise in the
data. They often fail when the generated model fit is poor
due to error in the data used to generate the model posi2
tion. Hough transform variations are less sensitive to
noise , but implementations for complex problems suffer
from large time and space requirements and from the de2
tection of false positives[5 ] . Range2weighted Hough trans2
form has been employed to extract directions and distances
to the walls so as to navigate a mobile robot in cluttered
rooms[6 ] . Although Hough Transform is an effective
method for detecting lines and curves from noisy data , it
has the drawback of sensitivity to the resolution of the dis2
cretization resolution[6 ] .

Uncertainty plays an important role in mobile robot
navigation at many levels , such as sensor interpretation ,
sensor fusion , map making , path planning , self2localiza2
tion , and control [4 ] . Sensors are typically noisy and the
information they provide is often ambiguous or misleading.
For example , the sensor uncertainty of mobile robots pre2
vents them from knowing their exact location during navi2
gation. Due to the statistical error , navigation methods for
mobile robots need to take various sources of uncertainty
into account in order to get robust performance. Feature
extraction and correspondence become difficult because of
the inherent noise of almost all sensors which often leads
to instability in the extracted features. In recent years
Laser Range Finders have been used extensively for navi2
gation in autonomous mobile robot systems due to their
high resolution and reliable performance[2 ,7 ] . Unlike con2
ventional approaches such as Hough Transform , we em2
ploy a robust but simple approach to extract the geometri2
cal feature under real dynamic world conditions which
provide the ability to cope with the sensor uncertainty.

This paper is organized as follows : Section 1 gives
an overview of the Laser Range Finder and discusses its
performance. The feature extraction algorithm , split2and2
merge method and feature representation approach are dis2
cussed in Section 2. The experiment results are described
in Section 3. Section 4 gives a discussion and concludes
this paper.

1 　Laser Range Finder ( L RF)

Although most robots today still employ some form of
sonar due to the cost and power consumption advantages ,
in our work LRF (See Fig. 1) is employed in the feature
extraction due to its high performance. Firstly , the sonar
data are sparse and many sonar devises have to be mount2
ed around the robot while a laser scanner is a dense rang2
ing device. Secondly , the response time of the LRF is
much shorter than sonar. Finally , LRF data is very reli2
able and stable in contrast to sonar which has disadvan2
tages of multiple specular reflections[8 ,9 ] , slow processing
speeds and wide beam width which gives rise to large an2

gular uncertainty in measurement as mentioned above.

Fig. 1 　Laser range finder LMS200

111 　LMS 200 Range Data
A SICK LMS 200 Laser Range Finder is an optical

sensor which scans its surroundings with infrared laser
beams. As a result of this scanning principle , the LMS
requires neither separate receivers nor reflectors. The sen2
sor operates on the principle of reflex light time measure2
ment . It emits very short light pulses. At the same time
an electronic stopwatch is running. If the light encounters
an object , it is reflected and thrown back to the sensor.
From the time between sending and receiving (Δt) , the
sensor is able to calculate its distance from the object . In
the sensor there is also a uniformly rotating mirror , which
deflects the light pulses so that they sweep a semicircular
area. By determining the mirror angle , the LMS detects
the direction at which the object is located. The sensor
will determine its precise position from the measured dis2
tance and the direction of the object .

As mentioned before , a laser range finder is e2
quipped to measure the distances of objects in the envi2
ronment . An object in the working space W is represented
as an observed range sensor data set Oi = ( ri ,θi) , where
ri is the distance ,θi is the angle relative to a predefined
direction (e. g. X2axis) , and i is a numbered index. In
this paper , we assume that all the indices are enumerated
in a counterclockwise direction ( Fig. 2) . O ( ri ,θi) ,
where ri ∈R , R = [0 , Rmax ] , i ∈ I , I = [0 ,θmax ] are
the polar coordinates of the points. The points are se2
quentially acquired by the laser range finder with a given
angular resolution.
112 　L RF Configuration

The LRF module controls the LRF and provides the
raw sensor data. This sensor provides scans in an 180°
angular field with a resolution of 1°through its RS232 in2
terface at 19200 baud. That is to say O ( ri , i) , where ri

∈ R , R = [0 ,8000 ] , i ∈ I , I = [0 ,179 ] (See Fig.
2) . The data are acquired within a period of about 200
ms. Its maximum range is set to be 8 000 mm , with a
statistical error + / - 15 mm.
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Fig. 2 　Laser range finder range data

2 　Feature Extraction and Correspondence Algorithm

211 　Feature Transform
First we transform the polar coordinate O ( ri ,θi) in2

to the Cartesian coordinate system ( xi , yi) , where xi =

ricosθi , yi = risin θi ( Fig. 2) . Next we calculate the

forward deference :δxf
i = x i - xi +η, δyf

i = y i - yi +

ηand backward deference :δxb
i = x i - xi - η, δyb

i = yi

- y i - ηon ( x i , y i) . The range image is divided into in2
tervals with step lengthηwhich is decided by the sensor
uncertainty field. The Feature Transform is defined as fol2
lows :δx′i = δxf

i - δxb
i ,δy′i = δyf

i - δyb
i .

212 　Multi2threshold Segmentation and Feature Ex2
traction

Once the original data is mapped into feature space ,
the eigenvalue of the intervals are calculated to determine
different types of geometrical features , which are then
used to register the features in the whole map . In order to
improve the robustness of the feature transform and con2
sider the sensor uncertainty implicitly , we use an observ2
ing window with k width. The eigenvalue in the sensor

feature space is defined as Fi = ∑
i + k

j = i

δx′j ·δy′j , where k

is the width of the observing window.
The feature type of the interval is decided by the

threshold and the precise position of the feature point is
calculated through Ei = argmax

i ∈[ j , j+ k ]
| δx′i ·δy′i | . In order

to unify the feature extraction algorithm into a framework ,
we employ the multi2threshold method.

Cθ = { i ∈I | Ei ∧δy′i ≤0 ∧( Fi ≥TConcave) } ,

Vθ = { i ∈ I | Ei ∧δy′i ≥0 ∧( Fi ≥Tconvex) } ,

Eθ = { i ∈ I | Ei ∧ ( ( Fi ≥ TEdge) ∨ ( Fi ≤-

TEdge) ) } ,

Sb = { i ∈ I | ( TConcave ≥ Fi ≥ TSegenment)

　∨ ( - TSegenment ≥ Fi ≥- TConcave) } ,

Se = Sb + k.

Where Cθ is the index of the concave corner , Vθ is
the index of the convex corner , Eθ is the index of the
edge , and Sb and Se are the beginning and ending indices
of the segments. The above detailed geometrical features
are essential for the geometrical reasoning.

213 　Split2and2Merge Feature Extraction Algorithm
The splitting phase starts from ( r0 ,θ0) taking the

whole range image as a candidate and splitting the raw
range data according to the step lengthη. After the Fea2
ture Transform and the multi2threshold segmentation , the
interval’s type is decided by the Feature Transform and
its eigenvalue. Feature vector : L i ( i = 0 ,1 , ⋯, n) =
(θiBegin ,θiEnd , F) , whereθiBegin andθiEnd are the begin2
ning and ending indices of the feature respectively. F ∈
( U , E , C , V , S) represents the feature type. Where U
represents that feature of interval is unknown ; E repre2
sents that feature of interval that is the Edge ; C represents
that feature of interval that is Concave ; V represents that
feature of interval that is Convex ; and S represents that
feature of the interval that is the Segment .

After the spilt loop we merge adjacent candidate in2
tervals if they are homogenous and extract task2specific
knowledge (corners , straight lines , edges , etc. ) . The
concave and convex corners are extracted by multi2thresh2
old segmentation and their positions are also calculated.
At the same time , the property of the geometrical feature
could be calculated such as the length and distance and
orientation (ρ,α, l) of the segment . It merges segments
until their eigenvalues are greater than a threshold. The
detail algorithm is shown in Fig. 3.

Fig. 3 　Slpit2and2merge algorithm

214 　Sensor Uncertainty and Step Length Selection
For the forward and backward difference , the step

lengthηis adjusted according to the object’s position and
the relative sensor uncertainty field. Fig. 4 shows the re2
sults of an experiment conducted for the purposes of
demonstrating the sensor uncertainty of LRF. Fifteen con2
tinuous epochs of sensor readings are recorded while the
sensor and the objects are both fixed. Fig. 5 gives a mod2
el of the sensor uncertainty and demonstrates the relation2
ship between the sensor uncertainty and the step length
selection. Another problem is that a previous approach[10 ]

suffers from the round off error because the data is too
dense and the difference between the adjoining points i .
e. δri = ri - ri +1 is too small comparing to ri and ri +1 .
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Fig. 4 　LRF sersor uncertainty field

　　Considering the above problem and the sensor uncer2
tainty , that approach[10 ] is not practical in this paper. If
ηis too small the round2off error will dominate the error
and the ifηis too large the truncation error will becomes
big and reduces the resolution as illustrated in Fig. 5.
Hough Transform has some inherent difficulties for the ac2
curate segment extraction. Although a small quantization
level of the angle could increase accuracy , the appropriate
selection of the quantization stepΔθis necessary due to
the false maxima of the accumulator matrix[11 ] . In order
to improve the robust performance , the Hough Transform
has to decrease the angle resolution of the segment extrac2
tion.

Fig. 5 　Step length selection and sensor uncertainty

215 　Feature Representations and Feature Tree
In the following we introduced the feature tree ( F2

tree) . F2tree is used to represent the features which have
been extracted. The F2tree enables the compact represen2
tation of environment and integrates the topological map
building and incremental building of geometrical models
for objects in a robotic context . The feature is not easily
managed due to the occlusion. Feature tree is used to
compactly represent the environment through a graceful
data structure ( Fig. 6) . The feature tree is constructed
sequentially and there are some important properties of the
feature tree. In the following we will first give a detailed
definition and then discuss the properties.

Fig. 6 　Environment with cluttered objects

　　The F2Tree is incrementally constructed by extracting
an object from the background and by getting the geomet2
rical informationδr = ri - ri - 1 , where i ∈ I . Obegin =
{ 1 + i ∈I | ri +1 - ri < - Tbegin} , Oend = { i ∈I | ri +1

- ri > Tend} , where Obegin and Oend are the beginning
and ending indices of an object respectively.

Definition : Feature Tree is a data structure accessed
beginning with the root node , the robot . Each node is ei2
ther a leaf or an internal node. The left and right leaf
nodes represent the beginning and the ending edges of the
object respectively. The internal node stores the attributes
of the object such as the feature type of the object or the
length of the segment . All children of the same node are
siblings (Fig. 7) .

Fig. 7 　Feature tree

　　The advantage of Feature Tree is that it considers the
occlusion implicitly and sequentially builds an environ2
ment map . While it is evident that invisible objects can2
not be tracked , objects that are occluded by another one
passing between the range finder and the first object must
be identified and presented correctly. Hence a Feature
Tree should be able to cope at least with short occlusions.
F2Tree represents the occlusion relationship compactly
(Fig. 6) . The property of the Feature Tree is discussed
from the viewpoint of data structure.

Property 1 　The depth , i . e. the distance from a
leaf to the root of the feature tree , represents the occlu2
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sion relationship of the objects. The deeper the tree is ,
the more difficult the occlusion relationship .

Property 2 　The siblings represent the adjacent ob2
jects in the environment . See CD and DE in Fig. 7.

Property 3 　If the left child of the internal node C
is not a leaf node , the beginning edge of C is occluded by
B. We temporarily take the end edge of B as the begin2
ning edge of C and record that C is occluded by B ( see
BC in Fig. 7) . If the right child of the internal node is
not a leaf node , the property is similar (See EFG in Fig.
7) .

Property 4 　Feature Tree is an ordered binary tree.
The key value of the leaf node is incremental from left to
right following the arrow direction. This ordered tree
makes traversing a feature tree to find a node with a given
key very effective making feature management easy. In
Fig. 7 we have the following relationships : Ab < Ae < Bb
< Be = Cb < Ce < Db < De < Eb < Ee = Fb < Fe = Gb <
Ge < Hb < He.

3 　Experiment Result

311 　Experiment Setup
The feature is determined by the eigenvalue after

multi2threshold segmentation. The thresholds are decided
by the relative sensor uncertainty field of the environ2
ment . In the experiments that follow we select the follow2
ing parameters : Tconvex = TConcave = 112 ×103 k ,

TSegement = 500 k , TEdge = 2 ×104 k . In this paper we

let k be equal to the step lengthη. The distance from the
object to the LRF is in the sensor field with a radius 3 m.
Considering the tradeoff of the truncation error and the
round off error , we select the step length as 3 to deal with
the sensor uncertainty.
312 　Feature Extraction and Correspondence Result

Figs. 8 and 9 illustrate that the feature representa2
tions in the Cartesian coordinate system are heterogeneous
and there are several peaks in the above experiment re2
sults. The concave and convex corners cannot be distin2
guished uniquely from other features so that the geometri2
cal feature cannot be extracted exactly from only one di2
mension such asδx′j or δy′j .

If we perform the feature transform of x and y , i . e.
f ( x , y) = δx′j ·δy′j , from the feature correspondence
results in Fig. 10 , the concave corner , convex corner and
segments are very obvious in the eigenspace and could be
extracted and corresponded very easily as shown in Fig.
11. The Hough transform provides no connectivity infor2
mation since it produces lines and not line segments.
Consequently , a special structure has to be introduced in
order to determine the end points of each line segment

that is part of the same line[11 ] . The Hough Transform
cannot extract the concave and convex corners directly
while the feature correspondence results ( see Figs. 10

and 11) validate that our algorithm can extract the geo2
metrical features directly and represent them in a unified
algorithm framework.

Fig. 8 　Feature transform of x

Fig. 9 　Feature transform of y

Fig. 10 　Eigenspace and eigenvalue
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Fig. 11 　Feature correspondence

313 　Feature Management Result
The detected beginning and end edge of the objects

are marked as bold triangles in Fig. 12. Fig. 12 shows
the experiment results of constructing the feature tree ,
which matches with Fig. 7 very well . The results show
the validity of using the feature tree to represent the oc2
clusion relationship of the objects in the environment .

Fig. 12 　Feature tree

4 　Conclusions and Future Work

In this paper we presented a simple but robust fea2
ture extraction algorithm using the multi2threshold seg2
mentation based split2and2merge method. The perfor2
mance and the characteristics are studied from the experi2
ment results. Further Feature Transform and feature
eigenspace are defined in order to extract the geometrical
features and represent the features in a unified frame2
work. Feature extraction and correspondence is accom2
plished by learning a set of geometrical features called
landmarks ( i . e. convex corner , concave corner and
straight line , etc. ) , each of which is detected as a local
extremum of a measure of uniqueness and represented by
an eigenvalue. After the original data is mapped into fea2
ture space , the eigenvalue of the intervals are calculated
to determine different types of geometrical features which
are then used to register the features in the whole map . In

order to improve the robustness of the feature transform ,
the sensor uncertainty is discussed and considered implic2
itly.

F2Tree is introduced for the management of the geo2
metrical feature of the environment and we presented a set
of characteristics of the Feature Tree. The central problem
in such systems is the robust performance of the feature
extraction and correspondence algorithm , which integrates
the sensor uncertainty into the adaptive step length selec2
tion. Experiment results obtained with the actual Laser
Range Finder are presented and online analysis is con2
ducted to show the feasibility and performance of the ap2
proach. We have implemented a reliable , robust and
computationally efficient algorithm that uses Laser Range
Finder to extract the geometrical features ( i . e. natural
landmarks) of the environment . The comparative study of
feature selection methods of Hough Transform and our fea2
ture extraction algorithm shows that our algorithm can not
only extract the concave and convex corners directly but
also provides the connectivity information of the features.
Once the rich features of the environment are extracted
and managed , our work can be further extended into im2
plementation of a robust and precise localization and navi2
gation algorithm for an autonomous mobile robot .
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