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Abdract : This pgper presents afeature extraction and corregpondence dgorithm which enploys a nove fegture trans:
form. Unlike convertiond gpproaches such as Hough Trandorm, we enploy a robug but Snple goproach to extract
the geometrica feature under red dynamic world conditions. Multi-threshold segmentation and the 9lit-and-merge
method are enployed to interpret geometrica features such as edge, concave corners, convex corners, and segments
in a unified framenork. The features are represented by feature tree (FTree) 9 asto conpactly represent the envi-
ronments and ome important properties of the F-Tree are discussed in this pgper. To denondrate the vaidity of the
goproach , we show the actud experiment resultswhich are based on red Laser Range Finder data and real time andy-
ds. The conparative gudy with Hough Trandorm shows the advantages and the high performance of the proposed dgo-

rithm.
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The locdization and navigation methods which oper-
ate on the bads of geometric reaoning are highly depen-
dent on the reliable extraction and recognition of features
from sensor data of an autoronous mobile robot*! . A key
ressarch conponent of the S AM (Smultaneous Locdizar
tion and Map Building) problem istha of reliable feature
detection and subsequent asociation. Image-based meth-
ods extract features based on edge formetions, such as
cornersor raight lines®! | or perform segmentation on the
badsdf intendty or color , while onar-based methods at-
tept to link ©nar points into lines and structures® .

A geonetricd feature is a ecid type of target that
can be reliably observed in successve senor measure
ments and that can be accurately described in terms of a
concise geometric  parameterization'®!.  Feature based
methods are concerned primarily with optimizing feature
corregpondence , and are susceptible to loca minima in
the function to be optimized, epeciadly when employed
with large- scale mgps.  Furthernore , these methods often
rely on an accurate a priori mgp which is usualy obtained
from architectural dranings, or by manua measurement ,
which can fail to account for the presence of furnishings
such as desks or chairs, or the issues of the dynamics of
human and robot interaction with the environment.

A popular alternative to extracting naturally occurring
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features from sensor data isto employ artificial landmarks,
that is, features which are not natural to a particular envi-
ronment , but which are inserted , dfixed , or othewi e de-
ployed on the bad s that they can be nore robugly detected
and extracted by a snor. Arificia landmarks benefit
from the ability to eadly extract parameters based on a pri-
ori knoMedge of landmark geometry, or through explicit
labeling, such as bar codes or ultraonic beacond® .
The use o artificia landmarks can greatly dnplify the
problem of podtion edimetion but there are dgnificant
drawbacks due to the fact that they require prior (and of-
ten human) intervention and can impose other cosly or
inpractical requirements on the environment.

Eploying a festure level description of the robotic
environment , the two inportant issues of feature extraction
and corregpondence are addressed in this paper. The for-
mer is known as the detection problem, and the latter the
reggration (or corregpondence) problem. In a dynamic
changing ervironment , it is difficult to maintain robug
feature extraction and ocorregondence. For nog feature
based methods, the choice of which features to enploy is
often sensor dependent and condrained to a particular go-
plication domain. Fopular dgorithms for festure metching
and nmodd extraction fal into two broad categories: gener-
aeand-tes andHough trandorm variations. However ,
both methodspresentproblemsi npracticd inplementations.
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Generate-and-ted methods are sendtive to moise in the
data. They often fail when the generated nmodd fit is poor
due to error in the data used to generate the nmode pos-
tion. Hough trandorm variations are less sendtive to
mise, but inplementations for conplex problems sufer
from large time and gace requirements and from the de-
tection of false postives'®. Range-weighted Hough trans:
form has been employed to extract directions and di gances
to the walls 9 as to navigate a nobile robot in cluttered
roomsi® . Although Hough Trandorm is an dfective
method for detecting lines and curves from moisy data, it
has the drawback of sengtivity to the resol ution of the dis
cretization resol ution!®!.

Uncertainty plays an inportant role in nobile robot
navigation & many levels, such as snsr intempretation ,
snor fudon, mgp making, path planning , saif-localizar
tion , and control 1!, Senwrs are typicaly noisy and the
irformetion they provide isoften ambiguous or mideading.
For exanple, the sengor uncertainty of rmobile robots pre-
vents them from knowing their exact location during navi-
gation. Due to the gatidical error , navigation methods for
nobile robots need to take various sources of uncertai nty
into acoount in order to get robus performance. Feature
extraction and ocorregpondence become difficult because of
the inherent noise of anog al sensrs which dften leads
to ingability in the extracted festures. In recent years
Laser Range Finders have been used extendvely for navi-
gation in autoronous nobile robot sygems due to their
high rel ution and reliable performance'® . Unlike con-
ventional gpproaches such as Hough Trandorm, we emr
ploy a robug but snple gpproach to extract the geometri-
ca feature under red dynamic world oconditions which
provide the ahility to cope with the sensor uncertainty.

This pgoer is organized as follows: Section 1 gves
an overvien of the Laser Range FHnder and discusses its
perfformance. The festure extraction agprithm, lit-and-
merge method and feature representation gpproach are dis
cussed in Section 2. The experiment results are described
in Sction 3. Section 4 gives a discusson and concludes
this paper.

1 Lasxr Range Finder (L RF)

Although nog robots today ill enploy some form of
nar due to the cog and power consunrption advantages,
inour work LRF (See Fig. 1) is enployed in the feature
extraction due to its high performance. Hrdly, the nar
data are garse and many onar devi s have to be mount-
ed around the robot while a laser scanner is a dense rang-
ing device. Secondly, the regponse time of the LRF is
much shorter than ©nar. FHnaly, LRF data is very rdi-
able and gable in contrag to snar which has di sadvan-
tages of multiple ecular reflections®®! | dow processing
geeds and wide beam width which gives rise to large an-
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gular uncertainty in measurement as mentioned above.

Fig.1 Laser range finder LMS200

1.1 LMS200 Range Data

A SICK LMS 200 Laser Range Finder is an optica
senor which scans its surroundings with irfrared laser
beams. As a result of this scanning principle, the LMS
requires neither separate receivers ror reflectors. The sernr
r operates on the principle of reflex light time measure-
ment. It emits very dort light pulses. At the same time
an electronic gopwatch is running. i the light encounters
anobject , it is reflected and thrown back to the sensor.
From the time between sending and receiving @A t) , the
s£nor is able to caculate its digance from the object. In
the senoor there is d 9 a uniformly rotating mirror , which
deflects the light pulses © that they sveep a semicircular
area. By determining the mirror ande, the LMS detects
the direction a which the object is located. The sensor
will determine its preci s podtion from the measured dis
tance and the direction of the object.

As mentioned bdfore, a laser range finder is e
quipped to measure the digances of objects in the envi-
ronment. Anobject in the working gpace Wis represented
as an observed range sensor data set O; = (r; 8) , where
ri isthe digance ,0; is the ange reative to a predeined
direction (e.g. X-axis) , and i is a numbered index. In
this paper , we assume that all the indices are enumerated
in a counterclockwise direction (Fg. 2). O(r 9;),
wherer;i R,R =[0,Rm],i I,l =08 ] are
the polar coordinates of the points. The points are s
quentialy acquired by the laser range finder with a given
angular resolution.

1.2 L RF Configuration

The LRF nmodule controls the LRF and provides the
rav €nor data. This senr provides scans in an 180°
angular field with a reslution of 1° through its RS232 in-
tefface a 19200 baud. Thet isto say O(ri, i) , where

R,R = [0,8000],i I,1 = [0,179] (See Fg.
2) . The data are acquired within a period of about 200
ms. Its maximum range is st to be 8 000 mm, with a
datigica error +/ - 15 mm.
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Fig.2 Laser rangefinder range data

2 Feature Extraction and Correspondence Algorithm

2.1 Feature Trandorm

Firg we trandorm the polar coordinate O(r; 9;) in-
to the Cartedan coordinate sysem (x;,y;) , where x; =
ro®;,y; = risnB; (Fg. 2). Next we caculate the
forward deference:dxX = x - x +N , 0yl = yi - y; +
N and backward deference :dx° = x - x -N,0y’ = vy,
- yi-non(x,y). Therangeimageis divided into in
terva swith gep length which is decided by the senor
uncertainty field. The Feature Trandorm is defined asfol-
lows:dxX; =8x - dx* Oy =0y - Oyl
2.2 Multi-threshold Segmentation and Feature Ex-

traction

Once the origind data is mepped into feature Pace,
the eigenvalue of the intervals are caculated to determine
different types of geometrical features, which are then
used to reg ger the features in the whole mep. Inorder to
improve the robusness of the feature trandorm and ocon-
sder the sensor uncertainty inplicitly , we use an observ-
ing window with k width. The eigenvalue in the sensor

itk

feature gace is defined as F; = Zéx’,—-éyj,wherek
2

is the width of the observing window.

The fegture type of the interva is decided by the
threshold and the precise postion of the feature point is
caculaed through E = firﬁlmﬁ(l OX;i-0y;i|. Inorder

to unify the festure extraction agorithm into aframenork ,
we enploy the multi-threshold method.

@ ={i Il B Oyi<0 (F 2 Tonae},

W ={i Il E O0Yi=20 (F 2 Toned},

b ={i Il B  ((F 2 Tee) (F <-
Tede) )} .

Sp = {i I (Tonae 2 F 2 TSagenment)

(' TSegenment 2 I:i 2 - TConcave)}y

S =S + k.

Where @ is the index of the concave corner , \b is
the index of the convex corner, B is the index of the
edge, and S, and S are the beginning and ending indices
o the segments. The alove detailed geometrical features
are esxentia for the geometrical reasoning.

2.3 Slit-and-Merge Feature Extraction Algorithm

The olitting phase garts from (ro 8 ) taking the
whole range image as a candidate and litting the raw
range data acoording to the gep lengthn . After the Fear
ture Trandorm and the multi-threshold segmentation, the
interva’ s type is decided by the Festure Trandorm and
its eigenvalue. Feature vector: L;(i = 0,1, ,n) =
© igegin O igna, F) , WhereB igegin and 6 gng are the begin
ning and ending indices of the feature regpectively. F
(U,E,C,V,9) represents the feature type. Where U
represents that feature of interva is unknown; E repre-
sentsthat feature of interval that isthe Edge; C represents
that feature of interval that is Goncave; V represents that
feature of intervad that is Gonvex; and S represents that
feature of the interval that is the Segment.

After the silt loop we merge adjacent candidate in-
tervas if they are honogernous and extract task- ecific
knowmedge (ocorners, draight lines, edges, ec.). The
concave and convex corners are extracted by multi-threshr
old ssgmentation and their podtions are al® caculated.
At the same time , the property of the geometrical feature
oould be cdculated such as the length and digance and
orientation (0 O ,1) of the ssgment. It merges segments
urttil their eigenvalues are greater than a threshold. The
detal dgorithmis shown in FHg. 3.

Algarithm: Spiit -and - Merge()
{
0 Given LRF range data start from(r,.8,):
1 divide the image into [L80/x] intervals ;
2 perform Feature Transform and calculate the eigeavalue;
3 extract feature using multi threshold segmentation;
4 if the interval’s feature F, = C then registry a concave comer;
5 if F, =V then registry a convex comer,;
6 if F =5AF_ =5 then begin a segment and record 8, _,.c
7 if F. =5 A F_, = § then merge the adjacent intervals;
8 ifF, =5AF, +§ then end a segment and record 4, .
y .

Fig.3 dpit-and-merge algorithm

2.4 Sensor Uncertainty and Sep Length Sdection
For the forward and backward difference, the gep
lengthn is adjuged acoording to the object’ s podtion and
the relative sengor uncertainty field. Hg. 4 showsthe re-
sults of an exeriment conducted for the purposes of
denongrating the sensor uncertainty of LRF. FHfteen conr
tinuous epochs of sensor readings are recorded while the
s£nor and the objects are both fixed. FHg. 5 gvesa nod-
e o the senor uncertainty and demongrates the relation-
ship between the senor uncertainty and the sep length
sdlection. Arother problem isthat a previous approach! ™’
sufers from the round off error because the data is too
dense and the difference between the adjoining points i.
e.0r = r - r.pistoo smal conparing to r; and ri.1.

- 363 -



Journal o Harbin Ingtitute o Technology ( New Series) , Vadl. 11,

4 - fmm

/
y = i 84
/[ I

foe

Fig.4 L RF srsor uncertainty fidd

Gond dering the above problem and the sensor uncer-
tainty , that gpproach™ is ot practica in this paper. I
N istoo small the round-off error will dominate the error
and the if N istoo large the truncation error will becomes
big and reduces the reolution as illugrated in Hg. 5.
Hough Trandorm has some inherent difficultiesfor the ac-
curate segment extraction. Although a small quartization
level of the ange could increase accuracy , the gppropriate
sdection of the quantization A8 is necessary due to
the false maxima of the accumulator matrixt™!. In order
to inprove the robug performance , the Hough Trandorm
has to decrease the ande reziittion of the segment extrac-
tion.

Fig.5 Sep length sHection and sensor uncertainty

2.5 Feature Representationsand Feature Tree

In the following we introduced the feature tree (F
tree) . Ftreeis used to represent the features which have
been extracted. The F-tree enables the conpact represen-
tation of environment and integrates the topological mep
building and incremental building of geometrica nodel's
for objectsin a rolotic context. The feature is rot eadly
managed due to the occluson. Feature tree is used to
conpactly represent the environment through a graceful
data gructure (Fig. 6). The feature tree is congructed
squentidly and there are ome important properties o the
feature tree. In the folloning we will firg give a detailed
definition and then discuss the properties.
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Fig.6 Environment with cluttered objects

The FTree isincrementally congructed by extracting
an object from the background and by getting the geomet-
rica irformationdr = r; - ri.;,wherei 1. Opegn =
{1+i [] risa- i <- Toegin} » Oend = {1 [ risa
- i > Tend} , Where Opegn and Oeng are the beginning
and ending indices of an object regectively.

Definition : Feature Tree is a data Sructure accessed
beg nning with the root node , the robot. Each node is ei-
ther a led or an internd node. The It and right led
nodes represent the beginning and the ending edges of the
object regpectively. The internal node dores the attributes
o the object such as the feature type of the object or the
length of the segment. All children of the same node are
sblings (Fg. 7).

Fig.7 Feature tree

The advantage of Feature Tree isthat it consdersthe
occlugon inplicitly and sequentidly builds an environ-
ment mgp. While it is evident that invisble objects canr
mot be tracked , objects that are occluded by amother one
passng between the range finder and the firgd object mug
be identified and presented correctly. Hence a Feature
Tree should be able to cope at leag with short occlusons.
FTree represents the occluson reationship oconpactly
(Fig. 6). The property of the Feature Tree is discussed
from the vieapoint of data sructure.

Property 1  The depth, i. e. the digance from a
ledf to the root of the feature tree, represents the occlu-
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son relationship of the objects. The deeper the tree is,
the nore difficult the occluson relationship.

Property 2 The dblings represent the adjacent ob-
jectsin the environment. See CD and DE in Fg. 7.

Property 3 I the It child of the internal node C
is ot aled node, the begnning edge of Cisoccluded by
B. We temporarily take the end edge of B as the begn-
ning edge of C and record that C is occluded by B (see
BCin Fg. 7). I the right child of the internd node is
not a le node, the property is smilar (See EFGin Fg.
7).

Property 4 Feature Tree isanordered binary tree.
The key value of the led node is incremental from It to
right following the arrow direction. This ordered tree
makes traverdng afeature tree to find a node with a gven
key very dfective making feature management easy. In
Fg. 7 we have the following relationships: Ab <Ae <Bb
<Be=Cbh<Ce<Db<De<Bh<E=F<Fe=0G«<
G < Hb<He.

3  Experiment Result

3.1 Experiment Setup

The feature is determined by the eigenvalue dter
multi-threshold segmentation. The thresholds are decided
by the relative senor uncertainty field of the environ-
ment. In the experiments thet follow we select the follow-
ing parameters: Tomex = Tomae = 1.2 X 10° k,
Tegement = 500 Kk, Tege = 2 x 10* k. In this paper we
let k be equd to the gep lengthn . The digance from the
object to the LRFisin the senor fidd with a radius 3 m.
Gongdering the tradedff of the truncation error and the
round off error , we select the gep length as 3 to ded with
the sensor uncertainty.
3.2 Feature Extraction and Correspondence Result

Fgs. 8 and 9 illudrate that the feature representar
tions in the Cartesan coordinate sysem are heterogeneous
and there are saveral peaks in the above experiment re-
aults. The concave and convex corners canrot be digin-
guished uniqudy from other features  that the geometri-
ca feature cannot be extracted exactly from only one di-
menson such asd X jordy ;.

if we perform the festure trandformof xand vy, i.e.
f(x,y) =0X; -0y, from the feature correpondence
results in Hg. 10, the concave corner , convex corner and
sgrents are very obvious in the eigengace and could be
extracted and corregponded very easly as shown in Hg.
11. The Hough trandorm provides no connectivity irfor-
metion dnce it produces lines and ot line segments.
Gonsequently , a gpecia dructure has to be introduced in
order to determine the end points of each line segment
that is part of the same line!™!. The Hough Trandorm
cannot extract the concave and convex corners directly
while the feature corregpondence results (see Fgs. 10

and 11) vaidate that our agprithm can extract the geo-
metrical festures directly and represent them in a unified
agorithm framenork.

Fig.8 Feature trandorm o x

Fig.9 Featuretrandorm o y

Fig.10 Eigenspace and eigenval ue
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Fig.11 Feature correspondence

3.3 Feature Management Result

The detected beginning and end edge of the objects
are marked as bold triandes in FHg. 12. Hg. 12 dows
the experiment results of condructing the feature tree,
which metches with FHg. 7 very wdl. The results show
the vdidity of udng the feature tree to represent the oc-
cluson relationship of the objects in the environment.

Fig.12 Feature tree

4 Conclusions and Future Wor k

In this pgper we presented a Snple but robugt fear
ture extraction agorithm usng the multi-threshold seg
mentation based 9lit-and-merge method. The perfor-
mance and the characteridics are sudied from the experi-
ment results. Further Festure Trandorm and feature
eigengpace are ddfined in order to extract the geometrical
features and represent the features in a unified frame-
work. Feature extraction and corregpondence is acoont
plished by learning a st of geometrical features called
landmerks (i. e. oconvex corner, concave ocorner and
draight line, etc.) , each of which is detected as a locd
extremum of a measure of uniqueness and represented by
an eigenvalue. After the orignal data is mapped into fear
ture gace, the eigenvalue of the intervals are calculated
to determine different types of geometrical features which
are then used to regi ger the festuresin the whole megp. In
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order to inmprove the robugness of the feature tranform,
the sengor uncertainty is discussed and consdered implic-
itly.

FTree is introduced for the management of the geo-
metrica feature of the environment and we presented a set
of characterigicsdf the Feature Tree. The centra problem
in such sygems is the robug performance of the festure
extraction and corregpondence dgorithm , which integrates
the senor uncertainty into the adgptive $ep length slec-
tion. Bxeriment results obtained with the actual Laser
Range Finder are presented and online analyss is con-
ducted to show the feaghility and perfformance of the gp-
proach. We have inplemented a reliable, robug and
conputationdly dficient algorithm that uses Laser Range
Finder to extract the geometrica features (i. e. naturd
landmarks) of the environment. The comrparative study of
feature selection methodsdf Hough Trangorm and our fear
ture extraction agorithm shows that our agorithm can not
only extract the concave and convex corners directly but
a 9 provides the connectivity irformation of the features.
Once the rich features of the environment are extracted
and managed , our work can be further extended into inr
plementation of a robugt and precise localization and navi-
gation agorithm for an autonormous nobile robot.
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