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Inverse Perturbation Method for Inverse Eigenvalue Problem

Based on Finite Element Analysis
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An inverse perturbation method is described for solving
the general inverse ecigenvalue problem. By taking the
analysis of the rotor system as example based upon FEM,
the new inverse perturbation method for structural design
with specified low-order natural frequencies or frequency
constraint bands is detailed as well as its complete
theoretical basis. Moreover, formulations to calculate the
inverse perturbation parameter & and method to select the
corresponding &'s value properly are also proposed. The
proposed method is characterized in reducing frequency
analysis and suitable for large and small structural changes
alike. Finally, several different numerical examples for
inverse cigenvalue problem are discussed to illustrate the
method, which show that this invaise prrturbarion method
is general and can be appliad (o otivir v/pe of structure or
clement.

Keywords, Inverse Eigenvalue Problem, Perturbation,
Inverse Perturbation Method

Introduction

The design of a structure either with specified natural
frequencies or with specified frequency constraint bands is
a problem that often appears in mechanical or structural
engineering. The most basic feature in determining the
vibration behavior of a structure is its cigenvalues and
cigenvectors associated with each natural frequency. In
most cases the first design does not satisfy all the free
vibration objectives and/or practical constraints.
Therefore, it's important for the designer to ecnsure that
the natural frequencies of the structure do not coincide
with the excitation frequencies. The common industrial
practice for optimizing the vibration behavior of structures
is to conduct a series of modifications, which is usually only
slightly different from the previous structure. Usually it
implies a number of expensive finite clement analysis
(FEA) design iterations.

To eliminate the need to re-analyze the whole
structure, research efforts were conducted towards
developing new concepts with sufficient information to find
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the exact modified parameters, which yield the required
natural frequencies. Early work in this direction-?! utilized
the first order terms of a Taylor’s series expansion and is
based on Rayleigh’s work. Chen and Garbae'™ used the
iterative method to modify structural systems. Later
Baldwin and Hutton” presented a detailed review of
structural modification techniques.

The inverse cigenvalue problem is to determine the set
of parameters so that the associated structure has specified
cigenvalues. And the numerical definition of the inverse
eigenvalue problem can be 7iven as following,

Supsrsc A(x) is derived from the equation

A(D) = A+ D,z o)

i=]
where x €ER*, {A;} are real symmetric n matrices. Let
{A:(x)} be the eigenvalues of A{x} arranged in ascending
order; 4 (z) < - < A (2).
The eigenvalue problem is generally given as follows;

Kp; =AMg;, j=1,2, >y m (2)
where K is the stiffness matrix; M is the mass matrix; @,
and A, are defined as jth eigenvector and cigenvalue of the
system, m is the number of degree of freedom.

Therefore, the inverse eigenvalue problem can be
defined as

Given real numbers A} <C++» <A}, find xER*, so that
A@=A,i=1,2,«, n

Three kinds of methods are being developed and used
in solving the inverse eigenvalue problem:

A. Mathematical optimization method; Let k, and
my, be the function of design variable X, K, M be the
fonctionelle of X, A* be the objective function, then
Eq. (2) can be solved as a mathematical problem using
mathematical optimization approach, for example,
Lagrange multiplier method, gradient-type subspace
iterative method and feasible direction method™*}.

B. Matrix perturbation method; the solution of Eq.
(2) can be written as analytic function of & as follows
according to the theory of perturbation™ 1,

#=ontep+Epp o
A =2dp ey + g+ 3
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Once known the prescribed eigenvalue Ay and the
corresponding mode shape %, the new eigenvalue A can
be computed expediently from Eq. (3).

C. Sensitivity analysis method: Sensitivity analysis is
used to assess the effect of varying structural parameters on
the dynamic characteristic of structure. This can help us
not only to determine which structural parameters should
be perturbed but also to find the
direction"'2 .,

However, method A needs repeated iterations of
frequency analysis, which usually means time consuming
and expensive FEA, and it is often not very successful since
it does not have advantage of solving non-linear problem.
Method B may reduce frequency analysis to some extent,
but the perturbation parameter ¢ is hard to set; and though
method C can find the perturbation direction, it can’t give
the corresponding perturbative amplitude of the design
variables.

Thus it is easy to think of finding an inverse eigenvalue
solution method when A} given to avoid repeated iterations
of frequency analysis and to set the perturbation parameter
€ more accurately.

Ref.13 proposed the idea of computing design
variables X from the given eigenvalue A accoiding to the
theory of general inversc ecigenvalue uroblem. Ref.?4
improved the method 1o solve the finite element
optimization design problem of rotor system with frequency
constraints. But it seems that their theoretical basis is not
complete and they have not proposed the general equation
of the perturbation parameter € as well. The fundamental
difference between method A and the methed described in
this paper is that instead of using iterative optimization
method, the perturbation parameter ¢ is directly computed
with an analytic equation derived from the dynamic
analysis of finite-element models. The method is very
efficient because it doesn’t need repeat analysis. Compared
with method B and C, our method can give the estimated
value of the perturbation parameter €. Based on this we
describe the improvement of this method, which make its
theoretical basis more complete. An example of beam
element of rotor system is also illustrated to propose the

perturbation

calculation equation and accurate and simplified evaluation
method of the perturbation parameter .

Theoretical Basis

The frequency gradient equation between the
eigenvalue can be obtained by differentiating Eq. (2)

Approximately we have
A = ¢ AKp; — A;0] AMp; (5

where Ad;, AK, AM are the increment of A;, K, M
respectively. And j is the exponent number of eigenvalue.

x; is the ith design variable, i = 1, 2, -+, n.

As it illustrated above, the function relation of design
variable X or € and K, M can be obtained from the finite
element analysis mode. An example of finite element
analysis mode of the plane beam element of rotor system
whose design variables are X;, X;, X, is detailed as
following to further illustrate it.

The element stiff matrix can be decomposed as

12/X}
6/X? 4/X,
K=E_1x —e/x 12/x =
/X0 X —6/X 4/X,
r12/x3
EI 0 0 +

—12/x3 0 12/X}

L O 0 0 0

Mo

EI 6/Xt 0 +
0 —6/X} 0

L6/X7 0 —6/X; O
ro 1

Lo wx J

Ly 6 o
Lo 2/x o 4/x,
X (K /X3 + K /X + K5 /XD (6)

where K° is the element stiff matrix; Kf{, Ki, K are
constant matrixes.

The bearing support rigidity parameter X, of rotor
system should be added into matrix element of stiff matrix
with respect to the influence of supporting constraint
condition. From Eq. (6), the element matrices constitute
the whole stiff matrix

K=XE&/X +K/X +K/X)+XK. D

where K, K;, K: are stiffness matrices of structure
constant; X, is the coefficient of supporting rigidity.

Considering the iterate number k and exponent
number j of the eigenvalue, let

XD = (14 kD) X0
AKMD = KD _ K® ®
AMHY = MJ(_HI) —M®

Suppose all of the design variables X are perturbed by the
same perturbation parameter €, then

( X® ) ZR(L)
AK§H1) — K§H-1) — K}*’ —_ e§k+1) W +
g&D ( X(;) )2?3&)

BB xRy (9a)
Ui

If we expand the binomial 1—_'_% » then
AK;H—I) —_ s}""’"Xﬁ,’-"l_(ﬁ" — EJ(HI) [1 _ E}H'D +

(D)2 — ()3 o] (XP)’KP

(X},-"))a
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eHD (XD 2K
S Ay J A8

XiP (9b)

In the same argument the whole mass matrix can be
obtained as

M = X,.(XM, + XiM, + XIM;) (10)

And the whole incremental mass matrix is
AM®D = [(+D )2 +2£;&1)]X§;>sz>ﬁ§n +

[:(EEH-D )3 + 3(5}“’1) )Z + 3€§H'1):| .

Xf,"') (ij"))zﬁz” +[(ej<,b+1))4 +

4(e;ﬁ+l) )3 + 6(e§l‘+l) )2 + 45}“‘1)] -

XP (X MY an
By solving simultaneously Eq. (5), Eq. (9), Eq. (11), the
value of the (k + 1) th £*"Y can be easily got without
iteration analysis as Eq.(9) and Eq.(11) are explicit
formulas.

Substituting Eqs. (9 and (11) into Eq. (5) and let

AK}H—I) — sz (E}H_D )AK(X;‘) ) ;
AMMD = fia (6847 AM(XSP).

gives the equation
M,('Hl) — (%u) )Tfl\'x (e;_H—D )AK(X}‘) )%(,k) —

/\,“" (¢k) 7 frte (EJ(,H-I) ) AM(XT) ﬁgn (12
D NN i
E_,- - fl ( (#_b) )TAK(}CjH )#I) _Alfk' (%fh) )TAM(X',('D )%(,h) )
13

where fxs fue> f. are symbols of function. As
AAHD — Ax A

AK(X®), AM(X® ) can be solved from from Eqs. (9) and
(11), and so €§** " can be solved, too. And because X** is
known, X*™ = (1+4&*#P)X® can be solved.

For the sake of convenience, ignoring the high-order
items of € in Eqs. (9) and (11) , the simpler equation can
be given as follows

= (XP)HR®
AK}H-I) —_ E}H—l)x’(q@)Kgb) _ EJ(-H'I) 1

(XiP)?

D ¢ W) Y2 TR
GRS e ke 19
iy

AMMD — ZE}HI)X;&)Xbﬁ)A_d{k) +
36}""”}(5,-") (X;jk) )zmh) +
45'(1-4-1)X;k) (Xz;) ):mh) EJ(_H-I) AIT'I,(-") 1s)
where AK§®, AMS® are the representatives of the kth
iteration factor on the right of Egs. (14) and (15).
M}K—H)
(%4&) )ka)%(p _ A!(,h) (%(,h) )Tmh) ¢!(,b)

e =

16>

Determination of the Inverse Parameter ¢

Theoretically, ¢ can be obtained directly from
Eq. (13) to meet Eq.(2). But if perturbed by the same

value of €, all of the design variables will scale and resize
in the same proportion to (1+¢), and of course this is
unreasonable. However, Eq. (13) and Eq. (16) are still
helpful and useful as they provide the theoretic basis of €’s
evaluation. What should be pointed out is that the result
computed through Eq. (13) or through simultaneous Eq.
(5), (9) and (11) is only meet Eq. (5), a problem is too
simple to have any constraint. While a structure system
always has other constraints besides eigenvalue (natural
frequency), i. e., stress range. Ref.13 details this
problem.

In fact, Eq. (16) is derived from the precondition of
“all the design variables perturbed by a same perturbation
parameter ¢” where € can be taken as the mean value of
every design variable’s corresponding perturbation
parameters. Although it is unreasonable and unpractical to
let distinguished types of design variables or different
variables of same kind be perturbed with the same e,
sometimes the short-cut calculation of Eq. (16) is useful in
practical application of engineering. Hence, it is possible
to modify the computing result of Eq. (16) to meet the
demands in feasible iegion znd enabled conditions.

The ideal and feasibie pertuibation parameter for a
inverve perivrbation problem should not be a unique mean
but be different values corresponding to the results of
sensitivity analysis for design variables. Therefore if
different correction factor can be selected for variant
design variables according to the results of sensitivity
analysis, the modified result (B;e) is obviously reasonable
and acceptable just like Eq. (16), here 8, is a modified
coefficient.

1 The specified frequency

Suppose perturbation parametere;, = {¢; | i =1, 2, -,
n} is corresponding to the perturbed design variables x;.
For convenience, omit the superscript k (iterations) and
the subscript j (order of eigenvalue). Consider eigenvalue
A, from Eq. (4), let

’,'——‘ 3/\/31:.', 1= 1921 "ty N (17)

Define the mean absolute value A,m, = _il 1/n] A%,

therefore the correction factor B; is obtained

/3.-=JA"%[. i=1,2, o, n (18)

where B,>0, B, is to resize the value of ¢ to gete;. So g
can be given by

g =fe,i=1,2,n (19

where ¢ is obtained from Eq. (13) or (16).

2 Design with lower limit and upper limit on
the variables

Consider the side constraints on the design variables
and assume the lower limit and upper limit are Xpux> Xumin
respectively, that is
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From Eq. (8), X*? = (14e)X® = (14+Re)XP, thus B,
should satisfy the following equation

0<h< B XD (hene>0)

o<ﬂ<(—"('"“")'ﬂ7,_fx(e‘—;)—) (whenecoy OV
and B, can be chosen as

B =min{,8.-, (—%(‘?,:—.{g)ﬁl}(whene>0)

B = min{ﬂ-, %}(whene<0) @

3 Design with frequency constraints bands

In fact, this inverse perturbation method can be used
to solve either single frequency constraint band or multiple
frequency constraint bands problem. Suppose the jth
eigenvalue A; falls into one of the constraint band {2, ,
A}, AAE™D in Eq. (16) can be given by

A’i}(#l) — Am ———/\,‘-")

(22)
A&;ﬁ-{-l) — ﬁ"‘ —A®

Once AXE*D, AX*D are Gbaired, the upper fimit and

lower limit €f%*?, e%'V ¢f = can be computed from

Eq. (16). Assume that the number of constraint bands is
p, namely, m=1, 2, ..., p,thus
€ = max{eE™}, >0
e = min{ef™ }, (e <<0)
m=1,2,, p3j=1,2, <, n 23

If one hopes that the designed frequency upward perturbed
to step aside the constraint band, the ¢ in Eq. (19) should
be €; otherwise should be e. If only hopes to step aside the

constraint band quickly and minimise the change of
structure regardless of the perturbation direction, may be
obtained from the following eqation

{E, when | € |<| €|
e = -
€, when|§|>|£|

24)

Algorithm Steps

The steps of the algorithm for the inverse perturbation
method are as follows:

(1) Given an initial starting design variable, find the
eigenvalues and eigenvectors from Eq. (2). Set the
iteration index k to 0. If |A* — A} is sufficiently small,
stop.

(2) Compute the e+ (If e*Y is biggish, perturbed
step by step) firstly from Eq. (16); Get perturbation
coefficients e{**V for each perturbed design variable by
solving Eq. (19).

(3) Determine AK**? and AM“*V by solving Egs.
(9) and (11). Then form new matrixes K%**? and M%*D
using Eq. (8); compute the A%*? form Eq. (2). If [A* -
A%*D L s sufficiently small, go to step 4, elseset k=k+1
and repeat from step 2.

(4) Calculate x; **? and K**? and M**V again, using
the matrixes to repeat analysis and repeat from step 1.

Numerical Examples

1 Example 1
Consider the simple system shown in Fig. 11'%]. The
cantilever beam supperiiag the rcint mass mo = €SL/10 at
it Tree end is composed of four piismztic segments of equal
length L. Additicaal parameters are: E=1, §=1, I=
EJ®@ EJ®

nd*/64=S§*/4m.
?mo
’ L L L

Rl 'l

4 EJ®

Fig.1 Calculating structure model

where

L = element length

E = modulus of elasticity

S = cross-sectional area

P = density

d = cross-section diameter

There are only two degrees of freedom for each node
because the axial rigidity EF = «. And the design variables
are the element lengths of the three beam elements with
initial values X{® = {0.96, 0.98, 0.97}. To get the
specified fundamental natural frequency «* >=3. 302 3,
using the uniform mass matrix and obtained the results
shown in Table 1. The corresponding optimal element
lengths are X7 = {0.995 7, 10 138, 0.994 1}, which is
close to Ref. 15°s results.

Table 1 Results for cantilever beam: optimum design variables for a specified first frequency

Iterative Target Calculated Perturbed Perturbation Perturbed design variables X; Reanalyze
number w" w, elements coefficients €; X1 X2 X3 (Y/N)?
0 3.3023 3.5118 / / 0.96 0.98 0.97 Y

1 0.036 5
1 3.3023 3.3061 2 ©0.0339 0.9950 1.013 2 0.9937 N
3 0.0244
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(Table 1 Continued)
[terative Target Calculated  Perturbed Perturbation Perturbed design variables X; Reanalyze
Number w” w, elements Coefficients ¢; X X2 X3 (Y/N)?
1 5.954 » 104
2 3. 3023 3.3028 2 5.525% 104 0.9956 1.0137 0.994 1 N
3 3.985% 1074
1 7.421 % 1075
3 3.3023 3.3024 2 6.885% 1075 0.9957 1.0138 0.9941 N
3 4.966 % 105
1 9.381 % 1078
4 3.3023 3.3023 2 8.705% 1076 0.9957 1.0138 0.9941 N
3 6.278 » 106
5 3.3023 3.3023 / / 0.9957 1.0138 0.9941 Y
Table 2 Cantilever beam in flexural vibration; optimum design variables for a specified third eigenvalue
[terative Target Calculated Perturbed I:(:;t:frl:i::z: Perturbed design variables Hg(mm) Reanalyze
Number AT Asc elements o Hg Hs, Hgy Hsy Hs CY/ND?
51.00
0 2.109 %107 2.201 % 107 / / 0 52.000 51.000 53.000 52.000 Y
1 -0.0243
2 -0.0214 49.75
1 2.109 = 107 2.157 = 107 3 -0.0085 o 50.898 50.86%  50.767 51.847 N
4 -0.0421 /
5 =¢.002¢
1 -0.00¢9
2 -0.0061 49.41
2 2.109 * 107 2.119 % 107 3 -0.0021 5 50.576 50.461 50.134 51.816 N
4 -0.0125
5 -0.0006
1 -0.0015
2 -0.0013 49.34
3 2.109 = 107 2.111 = 107 3 —0.000 4 1 50.509 50.438 49.997 51.810 N
4 -0.0027
5 -0.0001
1 —0.2956 = 103
2 -0.2631=103 49.32
4 2.109 » 107 2.109 = 107 3 —0.0869 * 103 7 50.496 50.434 49.970 51.809 N
4 —0.540 8 = 10°
5 -0.0220 %103
49.
5 2.109 = 107 2.109 = 107 / / 9732 50.496 50.434 49.970 51.809 Y
Table 3 Additive inverse problem: initial and final eigenvalues for a set of specified eigenvalues
Iterative number Ag Az Acs Act Acs Acs Ao Aes
Ao 8.3108 19.9917 29.4978 40.005 2 48.994 7 58.2918 69.1453 85.762 7
1 9.6754 20.1650 29.9690 39.966 3 49.644 4 58.7659 69.7271 81.601 8
2 9.9213 20.080 4 29.9953 39.9804 49.8557 59.2726 70.077 8 80.693 7
3 9.9773 20.0341 29.998 0 39.989 3 49.9281 59.5417 70.1809 80.194 2
4 9.9930 20.0156 29.9991 39.9950 49.963 8 59.7079 70.1890 80.1021
5 9.997 8 20.007 9 29.999 6 39.998 2 49.9831 59.816 4 70.159 8 80.014 8
6 9.999 3 20.004 4 29.999 8 39.9998 49.9933 50.887 2 70.1207 79.9810
7 9.999 7 20.002 5 29.9999 40.000 4 49.998 2 59.9331 70.084 6 79.9728
8 9.9999 20.0014 29.999 9 40.0005 50.0003 59.9616 70.056 0 79.9751
9 9.9999 20.000 8 30.0000 40.0005 50.000 9 59.9789 70.035 3 79.9807
10 10.0000 20.0005 30.0000 40.000 4 50.001 0 59.9890 70.0214 79.986 2




Joumal of Donghua University (Eng. Ed.) Vol.21, No.1 (2004)

83

(Table 3 Continued)

Iterative number Aa A2 A Acq Aes Acs Ag Acs
11 10.0000 20.000 2 30.0000 40.000 3 50.0008 59.994 7 70.012 4 79.990 8
12 10.0000 20.0001 30.0000 40.000 2 50.000 6 59.997 7 70.006 9 79.994 1
13 10.0000 20.0001 30.0000 40.0001 50.000 4 59.999 3 70.003 6 79.996 4
14 10.0000 20.0000 30.0000 40.000 1 50.000 3 60.000 0 70.0017 79.997 8
15 10.0000 20.0000 30.0000 40.000 0 50.000 2 60.000 2 70.000 7 79.998 8
2 Example 2 30.545 5, 40.062 7, 51.587 1, 64.702 1, 70.170 7, 71.318 5)

As is shown in Fig. 2, flexural vibration of a
uniform™, cantilever beam is used here to illustrate the
method above. To simplify the problem, the beam cross
section is rectangular, the motion will be planar, and the
shear deformation and axial displacement will not be
included. Consider the third natural frequency A, =
2.109X 107 rad?/sec®*. E=2.0684X10°mPa, v=0.3, =
7.833 4X107°Nsec?/mm?* .

© [ @ ] ® |

1 000 mm

Fig.2 Cantilever beam in flexural vibrotion

The initial design vaiiables arz Hy = {1, 52, 51, 53,
52}, and the corresponding tiiird natoral frequency is A§”
=2.291 % 10" rad®/sec*. After 4 iteration got the results
H* = {49. 33, 50.50, 50.43, 49.97, 51. 81}, which is
close to the Ref. 9’s results. See Table 2.

3 Example 3

Given an additive inverse problem with distinct
eigenvaluel'®). A(¢) be the family

A(L) = AO + chAk
k=1

Given real numbers A <<---<{A, , find ¢ € R*, such that
MO = AL, i =1,
n X n matrices.

» n. where A(c) is real symmetric

r o .
4 0
-1 -1 0
Ay — 1 2 3 0 ’
1 1 1 1 0
5 4 3 2 1 0
-1 -1 -1 -1 -1 —-1 O
L1 2 3 4 5 6 7 04

Al. =€}48Zy k= ]s ttty 8
A" =(o, 20, 30, 40, 50, 60, 70, 80),
¢ =Qo, 20, 30, 40, 50, 60, 70, 80).

Use the method above, the optimal eigenvalues can be
gotten as ¢* =(11.907 9, 19.705 5, 30.5455, 40.062 7,
51.587 4, 64.703 3, 70.170 4, 71.317 3). This is very
similar to the exact solution ¢* = (11.970 9, 19. 705 5,

provided by Ref. 16. And it shows that the method
prescribed in this paper is exact and effective. Table 3
displays the results.

4 Example 4

Although the method proposed in this paper is derived
from the analysis of beam structure modeled with finite
elements, it can be also applied to truss structure. Here a
25-bar truss problem that was provided by Ref. 6 is used to
state the multiple frequency constraint bands problem. Fig.
3 shows the truss structure. All the elements are made of a
= 7,0X 10" N/m’ and
mass density £ = 2 779 kg/m’, gravity acceleration g =
9.61 m/s* . nonsiructural mass at all nodes m, = 450 kg and

material with “(oung’s modulus #

*he minicium cross-sectional area is 0.5 cm?. The target is
to seek a design for which there are no frequencies in the
bands 0.0 - 2. 0 Hz and 14. 0 - 21. 0 Hz, which can be
called as the first band and the second band, respectively.

Bay 1
12

3

Bay 2 Bay 3 Bay 4 Bay 5§

5

10m

10 m

5*10m

Fig.3 Truss structure with 5 bays (25 bars)

Table 4 gives the results computed using our method in
comparison with that given in Ref. 6. Table 5 gives the
cross-sectional areas of the final design. Our results meet
the design while Ref. 6’s still fall in the prohibited second
band.

Table 4 Calculated Frequencies Unit; Hz
w1 wy w3 wy uky we w7
Ref. 6 1.89 6.29 9.05 10.58 12.76 18.41 19.29
This paper2.00 6.84 10.33 13.24 21.16 21.63 21.93

Table 5 Member Size of Final design for the truss

Unit; cm?
Bays Barl Bar 2 Bar 3 Bar 4 Bar 5
1 61.43 20.05 20.05 54.04 5.00
2 46.91 20.05 17.52 37.81 11.21
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(Table 5§ Continued)

Bays Bar 1 Bar 2 Bar 3 Bar 4 Bar 5

3 50.74 6.15 26.37 62.80 13.49

11.95  35.21 18.34  26.37 9.58

5 22,97  16.15 500 1273 10.70
Summary

The perturbation parameter €; corresponding to design
variable x; can be calculated directly by substituting
Eqs. (16) and (17) into Eq. (18). If the value of ¢; is not
sufficiently small, and it can be also combined with the
fractional step perturbation method to shorten the
computing time, viz. , replace AA with AA° = AA/z, where
Z is positive integer, then substitute AA° into Eq. (16).
Moreover, the inverse perturbation method and structural
matrix perturbation method can be used alternatively to
solve this problem.

For a rotor system, the design of structure is not only
with frequency (eigenvalue) constraint but also with other
constraints such as stress constraint, etc. Therefore, the
design optimization is actually a problem with multiple
constraints. In the solving process tre other ronmstrainvs
may be ignored temporally except the {requency constraint
bands before designing mee(s the demands of optimization.
Ref. 9 demonstrates this problem in detail.

The inverse perturbation method mentioned above can
be also applied to truss structure and other structures or
elements.
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