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Abstract. A Credit-Assignment CMAC (CA-CMAC) algorithm is proposed to reduce

learning interference in conventional CMAC. In the proposed CA-CMAC, the error of the
training sample distributed to the addressed memory cell is proportional to the cell’s credi-
bility, which is the inverse of the cell’s activated times. The learning process of CA-CMAC is

analyzed and conventional CMAC is proved to be a special case of CA-CMAC. Furthermore,
the convergence properties of CA-CMAC both in batch learning and in incremental learning
are investigated; meanwhile, the convergence theorems in the two learning schemes are ob-
tained, respectively. Finally, simulations are carried out to testify the theorems and compare

the performance of CA-CMAC with that of CMAC. Simulation results prove that CA-CMAC
converges faster than conventional CMAC.
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1. Introduction

Albus [1] first developed Cerebellar Model Articulation Controller (CMAC) neural

network as a control method based on the principles of the cerebellum’s behavior.

The main advantages of CMAC against MLP, RBF, and other neural networks are

its local generalization, extremely fast learning speed and easy implementation in

software and hardware, so it has been widely used in many fields, especially in

control fields [5, 7].

There are two basic learning schemes in CMAC. One is cyclic learning in which all

training samples are repeatedly learned in many cycles. Parks [8] investigated five

various cyclic algorithms in learning control systems, and recommended a ‘maxi-

mum error’ algorithm. The other is random learning in which the training samples

are selected in a random way. Random training requires longer periods to achieve a

desired performance level than cyclic learning [3]. Both cyclic learning and random

learning have a problem named as learning interference, which means training of

subsequent samples will destroy the precision of previous ones. Learning interference

is due to local generalization built in CMAC, so it can’t be avoided completely. In

order to reduce learning interference, David [12] suggested a method termed as

neighborhood sequential training. Sayil [9] developed a hybrid maximum error with
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neighborhood sequential training algorithm. But in neighborhood sequential train-

ing, subsequent training points must lie outside of the neighborhood of the previous

ones. It is usually impossible that these two methods are applied practically if the

function to be learned is unknown.

To develop efficient CMAC training methods, it is essential to reduce learning

interference and take advantage of CMAC’s generalization ability. In [11], Su

adopted a Credit-Assignment CMAC (CA-CMAC) algorithm to reduce learning

interference, but he didn’t make any analysis on the convergence of CA-CMAC. In

this paper, we propose a novel CA-CMAC algorithm in which the credibility of the

memory cell is determined according to its activated times. We further present the

credit matrix and the credit correlation matrix. We also prove that the conventional

CMAC algorithm is a special case of the proposed CA-CMAC algorithm. Then we

investigate the convergence properties and obtain the convergence theorems of

CA-CMAC in batch learning and incremental learning, respectively. Finally, simu-

lations are carried out to compare the performance of CA-CMAC with that of

conventional CMAC.

2. The CA-CMAC Algorithm

CMAC can be considered as an associative memory network, which performs two

subsequent mappings f : X ! A; h : A ! P, where X is M-dimension input space.

A is a N-dimension association cell vector which contains g nonzero elements. g is

the generalization parameter. P is one-dimension output space. In the first mapping,

the point Xk in the input space is mapped into a binary associative vector Ak whose

elements are defined as (1). In the second mapping, the network output is calculated

as the scalar product of Ak and the weight vectorW, as shown in (2). The update rule

to the weights is shown in (3). For the simplicity of analysis on the convergence, hash

coding isn’t considered here.

ak;j ¼
1 if the j-th element is activated by the k-th sample

1� j� n,
0 otherwise

(

ð1Þ

Yr;k ¼ AT
k �W ¼

XN
j¼1

ak;jwj; ð2Þ

wjðtþ 1Þ ¼ wjðtÞ þ DwjðtÞ ¼ wjðtÞ þ
bak;j
g

Yd;k �
XN
j¼1

ak;jwjðtÞ
 !

; ð3Þ

where k is the k-th sample, Yr;k the real output at the k-th sample, wj the j-th element

in the weight vector W, t the t-th cycle, b the learning rate, Yd;k is the desired output

at the k-th sample.
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From (3), it can be seen that all addressed memory cells get equal shares for error

correction of the sample (Xk;Yd;k) in the t-th cycle. This will result in that previous

learned information is corrupted due to learning interference. In fact, the memory

cells activated by (Xk;Yd;k) may have different learning histories, thus have the

different credibility. Based on the concept of credit assignment, we assign the cred-

ibility to each memory cell, which is the inverse of the cell’s activated times. The error

distribution is proportional to the credibility. The modified update rule to the

weights can be written as

wjðtþ 1Þ ¼ wjðtÞ þ b � ak;j �
1=fðjÞP
l ð1=fkðlÞÞ

Yd;k �
XN
j¼1

ak;jwj

 !
; ð4Þ

where fðjÞ is the activated times of the j-th memory cell. fk(l)is the activated times of

the memory cell activated by the k-th sample. The more times the memory cell has

been activated, the more accurate the stored weight is. The equal share of error

correcting as 1/g in (3) is replaced by ð1=fðjÞÞ=
P

lð1=fkðlÞÞ in (4). With this modifi-

cation, the error of the training sample can be appropriately distributed into the

activated memory cell based on its credibility. It is obvious the modified error dis-

tribution is more reasonable.

3. The Convergence Property of CA-CMAC

Wong[13] proposed another description of conventional CMAC algorithm to ana-

lyze the learning convergence. In this section, we will describe the learning process of

CA-CMAC in the similar way. The convergence properties of CA-CMAC in batch

learning and incremental learning are investigated, respectively.

Suppose the training samples are Xi;Yd;i ( i=1,2,. . .,n), n is the number of training

samples. Consider the t-th cycle of the k-th training sample, the output error dðtÞk is

dðtÞk ¼ Yd;k � AT
kW

ðtÞ Let gk ¼
P

lð1=fkðlÞÞ anddefine unit correction is d
ðtÞ
k gk. From (4),

correction for the weight in the memory cell activated by the k-th sample is

1=fkðlÞ�dðtÞk =gk. These corrections may affect the outputs of other training samples. At

this time, the output of the i-th training sample becomes AT
i W

ðtÞ þ dik � dðtÞk =gk, where

dik ¼
P

lð1=fikðlÞÞ, fikðlÞ is the activated times of the memory cell which is activated by

both the i-th sample and the k-th sample, evidently dik ¼ dki; dkk ¼
P

lð1=fkðlÞÞ ¼ gk. If

the initial weights are set to zeros, after t cycles, the accumulated unit correction of the

k-th sample is D0
k ¼

P
t d

ðtÞ
k gk. Then the output of the i-th sample can be expressed as

Yr;i ¼
Pn

k¼1 dikD
0
k. When the CA-CMAC learning converges, i.e., dðtÞk goes to zero, D0

k

will converge to a constant. Therefore, the convergence of CA-CMAC algorithm is

equivalent to the convergence of D0
k’s. Let D ¼ ðdikÞði; k ¼ 1; 2; :::; nÞ; D0 ¼

½D0
1;D

0
2; :::;D

0
n�
T. Expressed in a matrix form, the learning convergence is equivalent to

find the solutions of the linear system

DD0 ¼ Y; ð5Þ
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where Y ¼ ½Yd;1;Yd;2; :::;Yd;n�T, let A ¼ ½A1;A2; :::;An� and define a matrix F

F ¼

1=fð1Þ 0 0 ::: 0 0
0 1=fð2Þ 0 ::: 0 0
::: ::: ::: ::: ::: :::
0 ::: 0 1=fðN� 2Þ 0 0
0 ::: 0 0 1=fðN� 1Þ 0
0 ::: 0 0 0 1=fðNÞ

2
6666664

3
7777775
N�N

:

The diagonal elements of F represent the credibility of memory cells, so we call F

the credit matrix. From the definition of D, we can get

D ¼ ATFA: ð6Þ

We call D the credit correlation matrix. D has many good properties, which can be

described in Theorem 3.1.

THEOREM 3.1. The credit correlation matrix D has following properties: (a) D is a
real symmetric matrix. All of its elements are non-negative integers, and the diagonal
elements are gk k ¼ 1; 2; . . . ; n. (b) D is a positive semidefinite matrix.

Proof. Property (a) can be obtained easily from the definition of D. Property (b) is

proved as follows:

9X 6¼ 0, the quadratic form fðXÞ ¼ XTDX ¼ XTðATFAÞX ¼ ðAXÞTFðAXÞ � 0,

therefore, D is positive semidefinite.Then (5) can be written as

ATFAD0 ¼ Y: ð7Þ

If fðiÞ ¼ 1ði ¼ 1; 2; . . . ;NÞ, F will become into the unit matrix and gkðk ¼ 1; 2; . . . ; nÞ
equals to g. Then (7) becomes

ATAD0 ¼ Y; ð8Þ

where D ¼ ½D1;D2; . . . ;Dn�T;Dk ¼
P

t d
ðtÞ
k =gðk ¼ 1; 2; . . . ; nÞ. Equation (8) is no other

than the equation of the linear system described by Wong in conventional CMAC

algorithm [13]. Therefore, conventional CMAC algorithm is just a special case of

CA-CMAC, in which all the memory cells have the same activated times, thus have

the same credibility. (

3.1. THE CONVERGENCE OF CA-CMAC IN BATCH LEARNING

In batch learning, the update rule of the i-th sample in the t-th cycle can be written as

D0ðtþ1Þ
i ¼ D0ðtÞ

i þ bðYd;i �
Xn
j¼1

dijD
0ðtÞ
j Þ=gi; ð9Þ

Define a matrix
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G ¼

g1 0 0 ::: 0 0
0 g2 0 ::: 0 0
::: ::: ::: ::: ::: :::
0 ::: 0 gn�2 0 0
0 ::: 0 0 gn�1 0
0 0 0 0 0 gn

2
6666664

3
7777775
n�n

;

Equation (9) can be written as

GD0ðtþ1Þ ¼ GD0ðtÞ þ bðY�DD0ðtÞÞ; ð10Þ
i.e.,

D0ðtþ1Þ ¼ ðI� bG�1DÞD0ðtÞ þ bG�1Y: ð11Þ
Equation (11) is actually equivalent to the iteration of (5). From the convergence

theorems of the linear equations and matrix theories [10,14], we have following

lemmas.

LEMMA 3.1. For any initial vector Xð0Þ and q, the sufficient and necessary convergent
condition of the vector sequence fXðkÞg generated by iterative scheme
xðkþ1Þ ¼ MxðkÞ þ q (k ¼ 0,1,. . .) is that, the spectrum radius of the iterative matrix M

is less than 1, i.e., qðMÞ; 1.

LEMMA 3.2. If A is a Hermite matrix, A’s Rayleigh quotient R(x) is defined as
RðxÞ ¼ xHAx=xHxðx 2 Cn; x 6¼ 0Þ, where Cn denotes n-dimension complex vector set.
Suppose the maximum and minimum eigenvalues of A are kmax and kmin, then R(x) has
the following property: kmin � RðxÞ � kmax.

From Lemmas 3.1 and 3.2, the convergent condition of CA-CMAC in batch

learning is obtained.

THEOREM 3.2. The sufficient and necessary convergent condition of CA-CMAC in
batch learning is that, the learning rate b fulfils 0 < b < 2=kmax, where kmax > 0 is the
maximum eigenvalue of the matrix G)1 D.

Proof. From Lemma 3.1, the sufficient and necessary convergent condition of CA-

CMAC in batch learning expressed by (11) is

qðI� bG�1DÞ < 1: ð12Þ
Suppose k is any one eigenvalue of the iterative matrix I� bG�1D, and x is its

corresponding eigenvector, then

ðI� bG�1DÞx ¼ kx: ð13Þ
Let two sides of (13) left-multiply the conjugate transpose vector xH of x, then

xHðI� bG�1DÞx ¼ xHkx:

i.e.,
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k ¼ 1� b
xHG�1Dx

xHx
: ð14Þ

Because G�1D is the real symmetric matrix and x 6¼ 0; ðxHG�1DxÞ=xHx is the

Rayleigh quotient of the matrix G)1D and can be marked as R(x). G is the positive

diagonal matrix, so G)1D is also positive semidefinite. From Lemma 3.2, we know,

where 0 � kmin � RðxÞ � kmax, where kmax and kminare the maximum and minimum

eigenvalues of the matrix G)1D. From Theorem 3.1, G)1D is impossibly similar to a

zero-matrix, so kmax > 0. Then (14) becomes k ¼ 1� bRðxÞ and (12) becomes

max j1� bRðxÞj< 1 , j1� bRðxÞj< 1;8RðxÞ , 0< b< 2=RðxÞ;8RðxÞ:
ð15Þ

Equation (15) means that the sufficient and necessary convergent condition of CA-

CMAC in batch learning is the learning rate b simultaneously fulfils the require-

ments of 8R(x), i.e.,

b 2
\

8RðxÞ
fbj0 < b < 2=RðxÞg: That is 0 < b < 2=kmax:

3.2. THE CONVERGENCE OF CA-CMAC IN INCREMENTAL LEARNING

In incremental learning, the update rule of the i-th sample in the t-th cycle is

D0ðtþ1Þ
i ¼ D0ðtÞ

i þ bðYd;i �
Xi¼1

j¼1

dijD
0ðtþ1Þ
j �

Xn
j¼1

dijD
0ðtÞ
j Þ=gi: ð16Þ

D can be written as D=L+G+U, where L and U are the lower and upper off-

diagonal parts of D, respectively. G is the diagonal part of D and defined in Section

3.1. Then (16) becomes

GD0ðtþ1Þ ¼ GD0ðtÞ þ bðY� LD0ðtþ1Þ � ðGþUÞD0ðtÞÞ; ð17Þ
i.e.,

D0ðtþ1Þ ¼ ðGþ bLÞ�1½ð1� bÞG� bU�D0ðtÞ þ bðGþ bLÞ�1
Y: ð18Þ

Equation (18) is no other than the Successive Over Relaxation SOR scheme of the

linear system (5) with b being the relaxation factor. From the iteration theories of the

linear equations [14], we get Lemmas 3.3 and 3.4.

LEMMA 3.3. The necessary condition for the convergence of SOR scheme of the linear
system is the relaxation factorx fulfils o < x < 2.

LEMMA 3.4. If A is a positive definite matrix, when the relaxation factor x fulfils
o < x < 2, SOR scheme of the linear system Ax=b converges permanently.

Then, the convergent condition of CA-CMAC in incremental learning is ob-

tained.
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THEOREM 3.3. The necessary convergent condition of CA-CMAC in incremental
learning is that, the learning rate b fulfils 0 < b < 2. Specially, when D is a positive
definite matrix, 0 < b < 2 becomes the sufficient and necessary condition.

Proof. It can be easily obtained from Lemmas 3.3 and 3.4.

4. Simulation Results

To testify Theorems 3.2 and 3.3, we carried out a simulation using CA-CMAC to

approximate the complex one-dimension function

fðxÞ ¼ sin xþ 2 cosð2xÞ þ e�x; 0 � x � 9: ð19Þ
Simulation parameters are as follows: the training sample step and the quantizing

interval are both 0.5; the generalization parameter g is 8; the permitted error of each

training sample is 0.0001; the maximum cycles in batch and incremental learning are

500 and 1000.

It can be calculated that the matrix G)1D is positive definite and its maximum

eigenvalue is 8 under above simulation parameters. From Theorems 3.2 and 3.3, the

ranges of the learning rate for the convergence of CA-CMAC in batch learning and

incremental learning are (0, 0.25) and (0, 2), respectively. Figure 1(a) and (b) show

the mean square error (mse) of all training samples versus each cycle in the two

learning schemes. It can be seen that the CA-CMAC algorithm isn’t convergent

when the learning rate is beyond the range (0, 0.25) in (a) or (0, 2.0) in (b). Simu-

lation results prove the correctness of Theorems 3.2 and 3.3.

To compare the convergence performance of CA-CMAC with that of conven-

tional CMAC, another simulation is carried out to solve an inverse kinematics

problem of 2-DOF planar robot arm. Let (x, y) denote the coordinates of the gripper

of the arm. The joint angles are given as (20) in [15].

h1 ¼ arctanðy=xÞ þ arctan½l2 sin h2=ðl1 � l2 cos h2Þ�;
h2 ¼ arc cos½l21 þ l22 � x2 � y2Þ=ð2l1l2Þ�;

ð20Þ

1: b = 0.25,  2: b = 0.2,  3: b = 0.15,  4: b = 0.1 1: b = 2.0,  2: b = 1.9,  3: b = 0.5,  4: b = 0.1
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Figure 1. The convergence property of CA-CMAC.
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where h1 and h2 are the first and second joint angle, 0 � h1; h2 � p. Only h1 is

learned. l1 and l2 are the link lengths. Suppose l1 ¼ l2 ¼ 10 and 0 < x; y < 10.

Simulation parameters are as follows: the intervals of x and y of the training sample

are both 1, i.e., x, y=[0.5, 1.5, . . ., 9.5]; the quantizing intervals of x and y are both

0.5; the generalization parameter is 8; the permitted error of each training sample is

0.001; the maximum cycle is 100.

Because a larger fixed learning rate will result in unstable phenomenon while a

smaller one will cause slower convergence speed, it has been proved that adjusting

learning rate dynamically can improve the convergence performance of CMAC

algorithm effectively [4,6]. Figure 2 shows the comparison of two algorithms with the

learning rate decreased dynamically in incremental learning. The learning rate is

adjusted as follows:

0 20 40 60 80 100
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10
2

m
se

CA-CMAC 

CMAC

cycles

Figure 2. The convergence of two algorithms.
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Figure 3. The absolute error of untrained samples.
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bt ¼
bt�1 if mset < mset�1;

0:8bt�1 otherwise;

�
ð21Þ

where mset means the mean square error of all training samples after the t-th cycle. It

can be seen from Figure 2 that CA-CMAC converges faster than conventional

CMAC .The mean square error of CA-CMAC is less than 0.001 after only four

cycles. This fast convergent speed is especially important for many real-time control

applications. To compare the generalization abilities of two algorithms, the absolute

errors of untrained samples (i.e., x, y=[1, 2, . . ., 9]) after 10 cycles in two algorithms

are shown in Figure 3. It is obvious that the generalization ability to untrained

samples of CA-CMAC is also better than that of CMAC.

5. Conclusion

In this paper, a CA-CMAC algorithm is proposed to reduce learning interference in

conventional CMAC. The equal distribution of the training sample error into ad-

dressed memory cells in CMAC is replaced by proportional distribution based on the

credibility in CA-CMAC. Then the learning process of CA-CMAC is analyzed. The

convergence properties of CA-CMAC in batch learning and incremental learning are

both investigated, meanwhile, the convergence theorems in the two different learning

schemes are obtained, respectively, which are significant in acting as the guidance of

choosing the learning rate properly in practical applications. Finally, simulation

results of function approximating prove the correctness of the convergence theo-

rems. And simulation results of the inverse kinematics of 2-DOF robot arm show

CA-CMAC has a faster convergent speed and a better generalization ability than

CMAC.
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